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Abstract: This work deals with limit elastoplastic analysis of steel structures in the framework of mathematical 
programming. The maximum load carrying capacity of the structure is determined by solving an optimization 
problem with linear equilibrium, compatibility and yield constraints together with a complementarity constraint 
that is treated using a penalty function method. Incorporation of shear force effect determines a nonlinear 3D 
yield surface that is linearized appropriately with a set of planes. Moreover, a cone identification approach is 
adopted and thus, yield and complementarity conditions are formed only for the specific targeted yield 
hyperplane for every stress vector at the current loading state. In addition, isotropic hardening/softening cross-
sectional behavior is embedded via a linear multi-segment approximation without affecting the size of the 
problem. The entire formulation succeeds in reducing substantially the size of yield, hardening and 
complementarity conditions which become independent of the discretization, enabling the solution of large scale 
problems. Numerical results are presented that verify the validity of the proposed method and highlight the role 
of shear force effect. 
 
1 INTRODUCTION 

The ultimate load-carrying capacity of the structure is dealt in the framework of mathematical programming 
as an optimization problem based on piecewise linear constitutive relations following associated flow rules. This 
formulation, pioneered by Maier et al. [1-4], constitutes a combination of limit and deformation analysis under 
holonomic or nonholonomic assumption. This means that the maximum load factor is assessed at the final stage 
of collapse under equilibrium, yield and deformation i.e. compatibility constraints. 

A variety of alternative mathematical programming procedures such as iterative Linear Programming, 
Quadratic Programming, Restricted Basis Linear Programming, Parametric Linear Complementarity and 
Parametric Quadratic Programming procedures have been applied for elastoplastic analysis of structures [5,6]. 
The recent development of mathematical programming algorithms appropriate for Mathematical Programming 
with Equilibrium Constraints (MPEC) problems [7] has extended the potential of the proposed methods for 
structural analysis for both holonomic and nonholonomic assumptions [8-13]. 

The aim of this work is to examine the shear force effect on the ultimate load carrying capacity of frame 
structures. Thus, the adopted yield criterion accounts for the axial-shear force-bending moment interaction and 
the proposed formulation is applied for rigid-perfectly plastic and isotropic hardening behavior. Moreover, a 
threefold simplification is proposed concerning the evaluation of strength reserves, the direct evaluation of the 
hardening/softening response and the complementarity condition. The main step towards these goals is the 
identification of the particular cone in which the stress vector resides, determined at every loading stage, for 
every stress vector, during the optimization process. Based on this information both the reserves and the 
complementarity condition are solely evaluated for this particular cone. Furthermore, detection of the 
hardening/softening segment at which a critical cross-section is stressed, significantly simplifies the 
incorporation of multi-linear hardening law into the problem. 

The organization of the paper is as follows. First, the governing relations of holonomic elastoplastic problem 
based on equilibrium, kinematical and constitutive relations are summarized. Then, the formulation of the limit 
analysis as a MPEC problem is presented incorporating the axial-shear force-bending moment interaction. 
Subsequently a numerical example of steel frame is presented that illustrates the applicability of the proposed 
method and the role of shear force effect on the maximum load factor.  

 
2 FORMULATION OF THE PROBLEM 

The formulation of the holonomic problem is based on several assumptions. First, plane frames are 
considered to consist of straight prismatic elements subjected herein only to nodal loading for reasons of 
simplicity. Moreover, frame displacements are assumed small enough so that the equilibrium equations refer to 
the initial undeformed configuration. In addition plastic hinges are considered formed only at critical sections, 
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whereas the remaining parts behave elastically. The local nonlinear behavior of critical sections is described by a 
piecewise linear model and yield functions are linearized appropriately. Furthermore, under monotonically 
increasing external loading, local unloading if happens, is assumed reversible. Thus a holonomic i.e. path-
independent structural behavior is adopted. In the following, the aforementioned relations that govern the 
elastoplastic behavior are discussed analytically. It is noted that n  denotes the number of elements and nf the 

number of degrees of freedom. 
 
2.1   Equilibrium 

Each plane beam element develops six stress resultants at its ends, as shown in Figure 1. Three of them are 
considered as independent, while the remaining dependent actions can be evaluated by applying the three 
equilibrium equations. Herein, the axial force (

1

is ), bending moment at the start node j (
2

i
s ) and bending moment 

at the end node k ( 3
is ), as shown in Figure 1, are considered as independent [12,13]. The structural equilibrium 

relationship for the whole structure is then established as:  
 

 { } { } { }[ ] dB s a f f⋅ = +  (1) 
 
where B  is the (nf×3n) structural equilibrium matrix, formed by assembling the corresponding element 
equilibrium matrices, s is a (3n×1) vector for all primary stress resultants, a  is a scalar load factor, f  is the 

(nf×1) basic monotonically varying nodal forces and df  is the (nf×1) fixed nodal vector.  

 

 
 

Figure 1: Frame element i with positive stress resultants 
 

2.2   Piecewise linear yield condition 
In this work, it is considered that plastic hinges are formed under the combined effect of either axial-shear 

force-bending moment interaction (NQM interaction) or axial force-bending moment interaction (NM 
interaction). Thus, for the case of NQM interaction a plastic hinge can be formed at start node j  through the 

combined stresses 2 3
1 2( , , )

i i
i i

i

s s
s s

L

+

     and at end node k  through 2 3
1 3( , , )

i i
i i

i

s s
s s

L

+

−   −   . For the case of NM 

interaction a plastic hinge can be formed at start node j under the combined stresses (1 2,i is s ) and at end node k 

due to 1 3( , )i is s−   . For both cases the nonlinear yield surface is appropriately linearized and thus the yield 

condition is expressed in the form of linear constraints. The standard formulation involves all the hyperplanes, 
which increases considerably the number of yield constraints per critical section, complicating the entire 
formulation also at later stages. It is feasible though, to identify the specific cone in which the stress point resides 
and consider only one constraint associated to each critical section as potentially active or true active constraint. 
This consideration reduces the number of yield constraints maintaining only those with physical meaning. 
Moreover it facilitates the incorporation of multi-linear hardening reducing, in this respect, the complexity of the 
whole problem. 

 
2.2.1 Identification of the critical cone 

The 3D nonlinear yield surface is appropriately linearized with plane triangles. The vertices of each plane 
triangle together with the origin form one cone (tetrahedron). Each stress point belongs only to one of these 
cones-tetrahedra and targets at the corresponding plane triangle. Let the stress point be ( , , )P n v m=    and the 

tetrahedron have vertices (Figure 2): 
 

 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4( , , ),  ( , , ),  ( , , ),  ( , , )V n v m V n v m V n v m V n v m=   =   =   =    (2) 
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Then the stress point P lays in the tetrahedron if the following all five determinants have the same sign: 
 

 

1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2 2 2

0 1 2 3 4

3 3 3 3 3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 4 4 4 4 4

1 1 1 1 1

1 1 1 1 1
, , , ,

1 1 1 1 1

1 1 1 1 1

  

n v m n v m n v m n v m n v m

n v m n v m n v m n v m n v m
D D D D D

n v m n v m n v m n v m n v m

n v m n v m n v m n v m n v m

= = = = = (3) 

 

The comparison of the signs of iD  and 0D constitutes a check of whether P  and iV  are on the same side of 

boundary i  (namely the boundary that is formed by the three points other than iV ). If P  is inside all four 

boundaries, then it is inside the tetrahedron. If the sign of any iD  differs from that of 0D  then P is outside 

boundaryi , while if any of the determinants 0iD = , then P  lies on the boundary i . 

The aforementioned procedure is used for the identification of the critical yield plane that corresponds to 
each cross-section at every loading step. Then the yield condition is formed only for this plane and not for all 
possible ones, as it is shown in the sequel. 

 
Figure 2: Identification of the critical cone-tetrahedron. 

 
2.2.2 Yield condition 

Herein, plastic hinges are considered to develop at the element ends under the axial-shear force-bending 
moment interaction. Various yield criteria exist in literature for different materials and/or cross sectional shapes; 
herein the generalized Gendy-Saleeb yield criterion given by the following relation is adopted [14]: 

 

 2 2 21
1n mν

β
Φ = + + ⋅ −  (4) 

 

where 1 1 2 3 2 2, ( ) ,i i i i i i i i
y y yn s s v s s L v m s s= = + ⋅ =  or 3 3

i i
ym s s=

 
and 1 2, ,i i i

y y ys v s     and 3
i
ys  are the individual 

axial, shear and moment plastic capacities for the critical cross sections of the elements. It is noted that the above 
yield relation is valid for both rectangular and wide flange-I cross-sections. The introduced shape dependent 
parameter β  is evaluated for rectangular cross-sections and I-sections respectively using the following relations: 
 

 21 , 1 1.1n nβ β= − = −  (5) 
 

In this work, the aforementioned yield criterion is represented by a 3D nonlinear surface that is approximated 
by using 32 plane triangles (16 for m>0 and 16 for m<0) as shown in Figure 3. This converts the yield condition 
into a set of linear ones which is advantageous for the mathematical programming formulation of the problem. It 
is noted that the tessellation of the yield surface is such that the convexity of the yield criterion is maintained. 
More specifically, the approximation of the 32 plane triangles corresponds to 32 equations for the corresponding 
planes in x y z− −  space, which are of the following form: 
 

 0Ax By Cz D+ + + =  (6) 
 

where , ,A B C  are the components of the normal vector of the plane and D−  the distance of the plane from the 
origin. At cross-sectional level, using instead of , ,x y z   the , ,n v mvariables for the normalized axial, shear force 

and bending moment respectively
 
and performing an appropriate manipulation, the following forms of these 

equations are systematically determined for start nodes j  with respect to 1 2 3, ,i i is s s  as:   
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( )

2 31 2
21 1 2 2 2 3 2 2

1 2

21 1 2 2 2 3 2

0

1

i ii i
i i i i i i i it t t t

t t t t v v yi i i i i i
t ty y y t t

i i i i i i i
t t v t v t y

s s A B B Ds s
A B C D s s s s s

C Cs L v s L C L C

Ac s Bc s Bc s Dc s

µ µ µ

µ µ µ

+
⋅ + ⋅ + ⋅ + = ⇔ ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ + = − ⋅ ⇔

⋅ ⋅ ⋅

⋅ ⋅ + ⋅ + ⋅ + ⋅ ⋅ = − ⋅

 (7) 

 

For end nodes k , it is considered that 2 3
1 3N , Q , M

i i
i i i i i
k k ki

s s
s s

L

+

= −    = −   =  and thus the associated plane 

equations are of the following form: 
 

 

( )

2 3 31
31 1 3 2 3 3 3 3

1 3

31 1 3 2 3 3 3

0

1

i i ii
i i i i i i i it t t t

t t t t v v yi i i i i i
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i i i i i i i
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− ⋅ − ⋅ + ⋅ + = ⇔ − ⋅ ⋅ − ⋅ ⋅ − ⋅ ⋅ + = − ⋅ ⇔

⋅ ⋅ ⋅

− ⋅ ⋅ − ⋅ ⋅ − ⋅ − ⋅ = − ⋅

 (8) 

 

where , ,t t tA B C  and tD  the coefficients of each plane equation, ,t t tAc A C= ,i
t t tBc B LC=

 
,t t tDc D C=

 
21 2 1 ,i i i

y ys sµ =
 31 3 1 ,i i i

y ys sµ =  2 2 ,i i i
v y ys vµ = 3 3 ,i i i

v y ys vµ =  i=1,…,n (number of elements) and  t=1,…,16 (m>0). 

It is noted that for t=17,..,32 (m<0) the plane equations for each element end are given by: 
 

 ( )21 1 2 2 2 3 21i i i i i i i
t t v t v t yAc s Bc s Bc s Dc sµ µ µ− ⋅ ⋅ − ⋅ + ⋅ − ⋅ ⋅ = ⋅  (9) 

 

 ( )31 1 3 2 3 3 31i i i i i i i
t t v t v t yAc s Bc s Bc s Dc sµ µ µ⋅ ⋅ + ⋅ ⋅ + ⋅ − ⋅ = ⋅  (10) 

 
The first part of equations (7) - (10) represents the total stress state of a yielded element end under the effect of 
NQM interaction. Thus, the coefficients that multiply the variables 1 2 3, ,i i is s s  form the (3×2) matrix of the 

scaled normals
 

iN  for each element, while the second part of the equations forms the (2×1) vector ir  of the 

scaled yield limits in terms of bending moment. 

 
Figure 3: a) Nonlinear Gendy-Saleeb yield criterion, b) Linearized yield criterion and c) Plan view n-v. 

 
Incorporating the concept of cone identification and adopting the aforementioned criterion for both types of 

interaction, the yield condition is formed for the specific hyperplane and not for all possible ones as: 
 

 { } [ ] { } { } 0
T

w N s r= − ⋅ + ≥  (11) 
 

where w  is the (2n×1) vector containing the scaled moment reserves of all stress points, N  is the (3n×2n) 
matrix contains all scaled normal vectors of the identified yield hyperplanes and r  is the (2n×1) vector that 
includes the yield limits of the critical yield hyperplanes. 

It is noted that the cone identification approach reduces the number of yield constraints and converts the yield 
condition into an independent one from the discretization of the yield surface. 
 
2.2.3 Incorporation of multi-linear isotropic hardening 

The linearized yield surface is assumed to follow an isotropic multi-linear hardening rule [13]. At every load 
instance and for every critical section, the hardening segment l  that corresponds to the particular plastic 
multiplier z  is identified. Then, the hardening diagonal matrix H  with dimensions (2n×2n) and the vector 0H  

(2n×1) are built for the whole structure. The following relations determine the non-zero entries of the above 
matrices: 
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 1...2 , 1...( , ) , n nsegH hκ κ

κ κ τ κ =   == ⋅       
l

l  (12) 

 0

1 1
2

0, 1...2 , 1

( ,1)
( ) , 1...2 , 2...

nseg

n

H
h h z n nsegκ κ κ

κ

κ

τ κ
− −

=

                            =    =

=

⋅ − ⋅     =    =






∑ l l l

l

l

l

 (13) 

 

where 1 2 1( ) ( )yh s z zκ κ κ κ κ

λ λ
− −

= − −
l l l l l

, κ

λ
l

 is a scaling factor for yield limit with 0 1
κ

λ = , zκ
l

 is the value of 

plastic multiplier of the section at the end of segment l  and nseg is the number of hardening/softening linear 
segments for the thκ  cross section. It is noted that the previous elastic behavior is expressed by the term TN s  
and thus 0( ,1) 0H κ = . This means that H  accounts for the current hardening/softening measure that 

corresponds to the identified segment, while 0H  is the accumulated total constant previous hardening behavior. 

The yield condition for the whole structure is then expressed as: 
 

 { } [ ] { } [ ] { } [ ] { } 0
T

ow N s H z H r= − ⋅ + ⋅ + + ≥  (14) 
 
where z is the (2n×1) vector of all plastic multipliers. 

The aforementioned consideration can be expanded for unlimited number of hardening/softening segments 
without affecting the dimensions of H and 0H matrices and thus the size of the yield condition. This conception 

retains the computational simplicity of the cone identification consideration incorporating the multi-linearity of 
hardening behavior that approaches the real structural behavior. 

 
2.3 Complementarity condition 

An additional constraint that regulates elastoplastic behavior of the structure is the complementarity 
condition given by: 

  

 { } { } { } { }0, 0, 0
T

w z w z⋅ = ≥ ≥  (15) 
 
It indicates that when the identified yield function w  is activated ( 0w = ), the corresponding plastic multiplier 
z should be greater than zero. Similarly, when the yield hyperplane is inactive ( 0)w > , the corresponding 

plastic multiplier 0z = , indicating that no plastic flow occurs. Incorporating the concept of cone identification 
reduces significantly the number of the implemented equalities since the complementarity condition for each 
cross-section is expressed with regard to the specific yield hyperplane. 
 
2.4 Compatibility and strain decomposition 

Compatibility conditions relate the member deformations q  to the nodal displacements u . Since small 

displacements are considered in this work, the compatibility condition for the whole structure is given by: 
 

 { } [ ] { }
T

q B u= ⋅  (16) 
 

where q  is the (3n×1) deformation vector and u  is the (nf×1) nodal displacement vector. 

The constitutive law that governs the behavior of a generic element is based on deformation decomposition 
into the elastic and plastic component. For the entire structure this is expressed by: 

 

 { } { } { } [ ] { } [ ] { }
1

q e p S s N z
−

= + = ⋅ + ⋅  (17) 
 

where e is the (3n×1)  elastic,p  the (3n×1)  plastic part and S  is the (3n×3n) stiffness matrix of the structure. 

 
3 LIMIT ANALYSIS WITH MATHEMATICAL PROGRAMMING  

The aim of limit analysis is the determination of the maximum load that a structure can sustain with static 
and kinematic limitations. In this sense, the evaluation of the maximum load can be dealt as a maximization 
problem with equilibrium, compatibility, yield and complementarity constraints. Thus the system of equations 
(1), (14), (15), (16) and (17) embedding the yield hyperplane identification and the multi-linear 
hardening/softening behavior can be converted into the following optimization problem: 
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{ } { }
[ ] { } { } { }

[ ] { } [ ] { } [ ] { }

{ } [ ] { } [ ] { } [ ] { } { }

1

0

maximize

subject to

0

0, 0

T

d

T

T

a w z

B s a f f

S s B u N z

w N s H z H r z

ρ

−

− ⋅ ⋅


⋅ − ⋅ = 


⋅ − ⋅ + ⋅ = 


= − ⋅ + ⋅ + + ≥ ≥ 

 (18) 

 
The solution of the above problem provides simultaneously the load multiplier a, the corresponding stresses s 
and displacements u together with the plastic multipliers z. It is noted that the discrete nature of the 
complementarity condition is dealt by moving the complementarity term to the objective function and properly 
penalizing it with an iteratively increasing parameter ρ [12,13,15]. This treatment of the complementarity 
condition converts the optimization problem into a Non-Linear Programming (NLP) problem that is sensitive to 
initial values of variables and parameter ρ. 
 
4 NUMERICAL EXAMPLE 

The optimization problem described in relation (18) is implemented in Matlab code for the analysis of steel 
frame structures. The data are processed by fmincon solver (appropriate for the minimization of constrained 
nonlinear multivariable function), with the interior-point algorithm selected as optimization method. The aim is 
to investigate the role of combined axial-shear force-bending moment interaction and its influence on structural 
behavior. For this purpose, a steel plane frame has been examined for the following cases: 

• Case (a): Limit analysis, rigid-perfectly plastic, NM interaction. 
• Case (b): Limit analysis, multi-segment isotropic hardening behavior, NM interaction.  
• Case (c): Limit analysis, rigid-perfectly plastic, NQM interaction. 
• Case (d): Limit analysis, multi-segment isotropic hardening behavior, NQM interaction. 
The example concerns the three-storey, four-bay plane frame shown in Figure 4 that is subjected to 

increasing lateral and vertical loading. The frame is discretized into 39 elements, 32 nodes and 81 degrees of 
freedom. The steel grade is S235 with 8 22 10 /E kN m= ×  . Sections HEA300 and IPE330 are employed for all 
columns and beams respectively. The assumed multi-segment hardening/softening behavior depends on the 
parameters of every section. More specifically, for columns h1=2600kNm z1=0.005 λ1=1.04, h2=1625kNm 
z2=0.015 λ2=1.10, h3=-1392kNm z3=0.05 λ3=0.935, while for beam cross-sections h1=1260.1kNm z1=0.003 
λ1=1.02, h2=810.04kNm z2=0.01 λ2=1.05, h3=-992.3kNm z3=0.03 λ3=0.945. The initial value of 1000ρ =  for 

case (b) and 100ρ =  for case (d) with an updating rule of 10ρ ρ=  after each NLP solution until an appropriate 

convergence tolerance is reached (wTz ≤ 10- 6). 
 

 
 

Figure 4: Three-storey, four-bay plane frame and its multi-linear hardening/softening behavior. 
 

                              Cases            (a) (b) (c) (d) 
(αNQM-αNM)/αNQM % 

P. Plastic Hardening 

F
ra

m
e 

α (kN) 108.33 109.42 95.29 97.11 
-13.68 -12.68 

top-storey u (m)               0.165 0.141 0.167 0.158 

 
Table 2: Analysis results of frame. 

 
It is observed that the load carrying capacity of the structure is significantly reduced for the case of NQM 

interaction for both structural behaviors. In Figure 5 the ultimate states for all cases are presented. In Figure 5b 
and 5c the corresponding number of hardening/softening segment is inscribed next to each plastic hinge. 
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Although the plastic hinge pattern for cases (b) and (d) are identical, there is a difference in the the stress state of 
plastic hinges. The role of shear force is more evident at column bases for case (d). The interaction diagrams for 
all cases are depicted in Figure 6. Black and blue spots denote cross sections of j  and k  element end 

respectively. For NM interaction the dominant role of bending moment is evident, while the role of axial force is 
more intense for beam cross sections, especially for the right ends of first and second storeys that reside at their 
softening branch. Bending moment maintains its paramount role for NQM interaction, but shear force effect is 
stronger than that of axial force. 

 

 
 

Figure 5: Plastic hinge formation of frame for cases a) (a) and (c), b) (b) and c) (d). 
 

 
 

Figure 6: Interaction diagrams for all cases. 
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5 CONCLUDING REMARKS 
The elastoplastic analysis under holonomic behavior and mathematical programming evaluates the maximum 

load carrying capacity of a structure by solving an optimization problem subjected to constraints that enforce 
equilibrium, compatibility, yielding and the complementarity conditions. Due to the disjunctive nature of the 
latter, the aforementioned optimization problem is reformulated as a NLP problem by using a penalty function 
method which performs satisfactorily in terms of robustness and efficiency. 

Herein, the proposed formulation is based on the cone identification that precedes the development of both 
plastic deformations and multi-segment hardening/softening behavior. Every critical section, at any loading 
stage, belongs to a specific cone of the interaction diagram targeting only one yield hyperplane. Having this 
information the yield condition is formed only for this specific hyperplane and not for all existing ones. This 
reduces considerably the number of yield constraints, decreasing the complexity of the problem which becomes 
independent of the number of planes that approximate the nonlinear yield surface. Furthermore, incorporation of 
multi-linear hardening is also simplified and independent of the number of linear segments describing 
hardening/softening behavior. Having the critical yield hyperplane identified, only one plastic multiplier z is 
potentially needed for each cross section. As a consequence, hardening matrices are formed only for this plastic 
multiplier. This results also in drastic reduction of the size of complementarity condition which due to its 
discrete nature is the source of many inherent numerical problems.  

The optimization problem can incorporate various yield criteria in linearized form. In this work, the 
generalized Gendy-Saleeb yield criterion is adopted that accounts for the axial-shear force-bending moment 
interaction. Numerical results highlight that shear force effect in yield condition may be significant as it leads to 
reduction of the load carrying capacity and thus to unsafe design, as compared to axial force-bending moment 
interaction. Moreover, for more complex configurations this may lead also to different collapse mechanisms.  
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