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1. ABSTRACT

In this work the elastoplastic analysis of frame structures with hardening behavior and
axial force-bending moment interaction is examined in the framework of mathematical
programming. The maximum load carrying capacity of the structure is determined by
solving an optimization problem with linear equilibrium, compatibility and yield
constraints together with a complementarity constraint that is of discrete rather than
continuous nature. This is difficult to handle numerically and can be circumvented by
several techniques, two of which are the penalty function and relaxation approach. These
two methods are implemented for the analysis of steel frames for elastic-perfectly plastic
and hardening behavior under pure bending and axial force-moment interaction. Numerical
results are presented that reveal the inherent characteristics of the two methods in overall
favoring the penalty method.

2. INTRODUCTION

Limit analysis has been extensively used for the elastoplastic analysis and design of
structures. This aims at determining the collapse load and collapse mechanism that lead to
a more efficient design following ultimate limit state design codes. Utilizing the potential
of mathematical programming elastic-perfectly plastic behavior is fully explored.
Furthermore, the work of Maier and his co-workers [1,2,3], has offered a whole new
perspective at treating elastoplastic analysis problems obeying more general constitutive
laws. Holonomic and non-holonomic elastoplastic analysis problems based on piecewise
linear constitutive laws were formulated as quadratic programming problems or restricted
basis linear programming problems or parametric linear complementarity problems. The
combination of mathematical programming and limit analysis approach with multilinear



constitutive laws has led to the formation of an optimization problem with equality
constraints and a linear complementarity constraint that provides maximum load factor,
stresses, displacements and strains at member ends simultaneously [4,5,6,7]. This problem
is of discrete nature due to the presence of the complementarity constraint and is
circumvented by means of various methods [8]. The aim of the present work is to compare
two of the proposed methods for solving the aforementioned nonconvex optimization
problem and to examine their robustness and efficiency in calculating the maximum
collapse load for hardening behavior that accounts for the interaction of axial load and
bending moment.

3. MATHEMATICAL MODEL AND GOVERNING RELATIONS

Plane frames are considered that consist of straight prismatic elements subjected only to
nodal loading for reasons of simplicity. Frame displacements are assumed small enough so
that the equilibrium equations refer to the initial undeformed configuration. It is also
assumed that the structure consists of nel/ elements and has nf degrees of freedom, while y
is the number of yield hyperplanes at each element end. The equilibrium of every element

is described in terms of three independent stress resultants, namely axial force (s;) and

bending moment (s}) at the “start” node j and bending moment (s} ) at the “end” node £, as

shown in Fig. la. Equilibrium at each element is enforced and the six end forces are
expressed in terms of the three independent stress resultants of the element. The structural
equilibrium relationship [4,5] is then established as:

B-s=a-f (1)
where B is the (nfx3nel) structural equilibrium matrix, s is a (3nelx1) vector for all
primary stress resultants, a is a scalar load factor and f'is a (nf* /) matrix of nodal loading.
Compatibility which relates the member deformation ¢ to the nodal displacements u'
(Fig.1b) follows a congruent relation for the whole structure and is given by the following
linear relation:

q=B"-u (2)
where ¢ is the (3nel x 1) strain vector and u is the (nf* 1) nodal displacement vector.
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Fig. 1: Frame element i (a) the three independent stress resultants, (b) the corresponding
generalized displacements.

The constitutive law decomposes the strain to an elastic and plastic part, as depicted in
Fig.2. For the entire structure this is expressed by the relation:

q=e+p 3)
where ¢ is the total strain, e is the elastic and p the plastic strain.
The elastic branch is fully described by the relation:

s=S-e 4)
where S is the (3nel/x3nel) stiffness matrix of the structure. The structural plastic
deformations p are defined for holonomic assumption as follows:



p=N:-z )
where N is the (3nel x2ynel) matrix of all unit normals to the yield hyperplanes and z is the
(2ynelx1I) vector of plastic multipliers. For the yield conditions a piecewise linearized
locus 1s adopted for detection of plastic hinge formation at member ends accounting for
axial-bending interaction [4,5]. This constitutes an inscribed polygon to the nonlinear yield
condition and is an advantageous and safe approximation in limit analysis as it maintains
the linearity of the constraint. For steel structures that are examined herein, a hexagonal
piecewise linear yield locus is used as presented in Fig. 3 [4,7]. Positive and negative
properties of the yield condition are identical and reduction of the pure bending capacity
occurs for axial force greater than a fraction 7, (herein 7, considered as 0,15). Moreover,
isotropic hardening behavior is considered, not complying though with Bauschinger effect.
The set of hardening yield functions for the whole structure is collected in vector w
(2ynel x1) as follows:

w=-N"-s+H-z+r>0 (6)
where H is the (2ymelx2ynel) hardening matrix, z is the (2yne/x1I) vector of plastic

multipliers and 7 is the (2ynelx1) vector of yield limits. It is also noted that y is the
inclination angle defined in Fig. 3a, 4 is the tangent of the stress-strain diagram (Fig.3b),

r=1+0,15-tany, q, = P j=1,...,6, where j is the corresponding number of the yield

pcj
hyperplane, p. is the arbitrarily assumed critical plastic strain and p.; are the actual critical
plastic strain values.
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Fig. 2: Strain decomposition into elastic and plastic components.
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Fig. 3: (a) Yield and failure hyperplanes for axial force and bending interaction,
(b) Corresponding hardening behavior.

4. FORMULATION OF LIMIT ANALYSIS PROBLEM AND ALGORITHMS

Holonomic behavior is acceptable provided that no strain reversal (or "local" unloading)
occurs in the structure during the loading process. For proportional loading and
monotonically increasing loads, local unloading rarely occurs and, when it occurs, it



seldom influences significantly the overall behavior, particularly for hardening structures
[1]. The formulation of the holonomic problem consists of three basic notions, namely
statics, kinematics and constitutive relations and is expressed within a Lagrangian small
displacement regime by relations (1)-(6) together with the following complementarity
condition:

wz=0, w>0 , z>0 (7)

The latter prohibits simultaneous activation of plasticity and unloading. More specifically,
the complementarity condition indicates that when the yield function wjis activated (w;=0),
the corresponding plastic multiplier z; should be greater than 0. Similarly, when the yield
hyperplane j is inactive (w;>0), the corresponding plastic multiplier z;=0, namely no plastic
flow occurs. Equations (1)-(7) can be simplified by retaining the variables s, u, z so that a
Mixed Complementarity Problem (MCP) is formulated. This is equivalently converted into
the following optimization problem the solution of which provides simultaneously the load
multiplier a, stresses s, displacements u and plastic multipliers z [4]:

maximize a
subject to B-s—a-f=0
St s—B"-u+N-z=0
w=-N"-s+H -z+r>0, z>0, w -z=0

Mathematically this is a nonconvex optimization problem that is known as a Mathematical
Programming with Equilibrium Constraints (MPEC) problem including the
complementarity constraint that acts as a switch and is of discrete rather than continuous
nature. This disjunctive constraint is difficult to handle numerically leading to numerical
instabilities due to lack of convexity and smoothness. Despite all these inherent difficulties,
the MPEC problem (8) can be solved by converting it into a standard, though still
nonconvex, nonlinear programming (NLP) problem by suitably treating the
complementarity condition. Several techniques have been proposed such as penalty
function formulation, relaxation method, active set identification approach, sequential
quadratic programming (SQP), interior point methods and others [8]. Herein, the penalty
function approach (penalization) and relaxation approach (smoothing function) are
investigated with respect to robustness and efficiency. The basic idea is to circumvent the
complementarity constraint by a parametric reformulation, so that as the governing
parameter increases (or decreases) the original complementarity condition is approached.
According to penalization method, the complementarity term appropriately penalized is
moved to the objective function [5] and the problem formulation is as follows:

(8)

maximize a-p-w -z

subject to B-s—a-f=0
St s—B"-u+N-z=0
w=-N"-s+H -z+r>0, z>0

For the smoothing method, the objective function and the constraints are kept in their
initial linear form and the complementarity constraint is replaced with a nonlinear function
with an equivalent behavior [5]. Although there exists in literature a great number of such
functions, herein the well known Fischer-Burmeister function is adopted given by:

I
gog(zj,wj):;(zj+wj—1/z§+wj+2-gz) (10)

The parameter ¢ is iteratively decreased to satisfy the desirable complementarity tolerance.
It is worth noting that the above two formulations are sensitive to the initial values of p and

)



¢ and their subsequent increase and decrease respectively. Typical starting values of p and &
are between 0,1 and 1 with an update of p=10p and e=¢/10 after each NLP solution until an
appropriate convergence tolerance is reached (w'z < 10°%).

5. PLASTIC ANALYSIS WITH MATHEMATICAL PROGRAMMING

The limit analysis problem described in relations (9) and (10) has been implemented in
MATLAB code for the analysis of two steel frame structures (Fig. 4) [6,10] having
material properties and geometrical characteristics presented in Table 1. The aim is to test
the efficiency of the penalty function and relaxation approaches for the cases of elastic-
perfectly plastic and hardening behavior under pure bending and axial force-moment
interaction. In Table 2 all the results are presented. Firstly, it is noted that smoothing
approach is more sensitive and falls short in efficiency and robustness as compared to
penalization method. Although smoothing method gives a greater value of maximum load
factor a for frame 2, the stress distribution to element ends seems to be limited and
consequently fewer plastic hinges are formed which are more heavily damaged. It is also
observed that frame 1 collapses at greater values of a for the case of pure bending than for
the case of interaction when same material behavior is assumed, while frame 2 presents
almost the same values of a for both cases. Moreover, it is noted that under the same
conditions i.e. pure bending or combined stresses, incorporating hardening offers, as
expected, greater values of maximum load factor a as compared to elastic-perfectly plastic
behavior for both frames.
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Fig. 4: Frames under examination (a) Frame 1, (b) Frame 2.

Material Properties & FRAME 1 FRAME 2
s T i Columns Beams Bracings Columns Beams Bracings
Yield limit of axial force S1y 3736.5 kN 669.3 kIN 669.3 kIN 37365 kN 669.3 kIN 669.3 kN
Ultimate limit of axial force 1 5604.8 kN 803.2 kN 803.2 kN 5604.8 kKN 803.2 kN 803.2 kN
Yield lmit of bending moment 52y 602,1 kNm 51,8 kNm 51,8 kNm 602,1 KNm 51,8 KNm 51,8 kKNm
Ultimate limit of bending moment $2c 903.1 kNm 62.2 kNm 62,2 kNm 9031 kKNm 62.2 kNm 62.2 kNm
Hardening 7 200 kNm 40 kNm 40 kNm 200 kKNm 20 kNm 20 kKNm
Number of elements nel 21 45
Number of nodes mmodes 14 34
Number of degrees of freedom nf” 36 90
Modulus of elasticity £ 2-10% KN/'m? 2-10% kN'm?

Table 1: Properties of frames under examination.



Maximum Load

Elastic-perfectly plastic Elastic-perfectly plastic Penalization with hardening Penalization with hardening Smoothing with hardening
(pure bending) (interaction) (pure bending) (interaction) (interaction)
; FRAME 1
g 1244KN | 122 kN | 1354 kN | 131,4 kKN | 124,9 KN
= FRAME 2
82,8 kKN | 84,1 kN | 91,8 KN | 87,5 kKN | 112,9 kN

Table 2: Maximum load factor a for all limit analysis cases.

The aforementioned analysis cases are also conducted for increasingly applied load to
determine the capacity curve of the structure. The maximum load factor a versus upper-
storey horizontal displacement u is depicted in Fig.5. The conclusions generally coincide
with those of limit analysis for single step loading and in addition, it is more evident that
the assumption of elastic-perfectly plastic behavior leads to responses with great
displacements and consequently great values of ductility. In Fig. 6, for hardening behavior
consideration and for penalty function approach the plastic hinge disposition, the
corresponding stress conditions of element start ends as well as the deformed shape of
frames are displayed.
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Fig. 5: Responses of (a) frame 1 and (b) frame 2.
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penalization approach at (a) frame 1 and (b) frame 2.




6. CONCLUDING REMARKS

In this work, limit analysis of frame structures exhibiting hardening behavior is formulated
as a mixed complementarity problem of mathematical programming. The determination of
maximum load is established by solving an optimization problem with complementarity
constraint. This is appropriately treated with either penalty function formulation or
relaxation approach via a smoothing function. These methods are implemented for the
analysis of two steel structures for the cases of elastic-perfectly plastic and hardening
behavior under pure bending and axial force-bending moment interaction. The results
proved that penalization method is more robust than smoothing which is more sensitive in
setting the initial values, the bounds and the parameter that frequently needs to be altered
in the course of the procedure to achieve accurate results.
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ITEPIAHYH

H epyocio avty mpoaypatedetor 1o O€pa TG €ANCTOTAAGTIKNAG OVAALONG HE YXPNOM
uebodwv pobnuatikod mpoypappaticpov. O TPocdoPIGHOS TOV POPTIOL KATAPPELONG
EMTLYYAVETOL PEGO amd TNV €MiAvoN €vOg TPOPALTOC PEATIOTOTOIMNONG UE YPOUUIKOVG
TEPLOPIGHOVS 150ppoTiaG, GLUPPBAGTOD TAPALOPPDOGEMY, OLOPPONS KOL VOV TEPLOPIGHO
CUUTANPOUOTIKOTNTOC, O OTTO10G EYEL O10KPITO YOPOKTIPO KOl OVGKOAEVEL TNV OPLOUNTIKY
enilvon, eve petatpénel To TpOPAnpa oe pn kvptd. To gumddio avtd propei vo apbet pe
xpNomn Odpopwv peBOdwV, dVO €K TOV OTMOIMV €ival 1 ELGOYWYN CLVAPTNONG TOWNG N
ocuvoptioewv gfopdivvone. Ot pébodot avtéc epoppolovtal yoo v avaivon 600
UETOAMKAOV TAALGIOV Yo S1dpopeg BempNCES CLUTEPLPOPAS VAKOD Kot Yio S16.9popovg
cLVOLAGOVS dpdoemv. Ta amoteléouata divovv mpofadicpo otn pnéEBodo Tovng, Evd ot
GUVOPTNOELS EEOUAAVVONG TPOKVTTTOVY GNUOVTIKA evaicOnTEC Kot aoTabElS.



