
Personalizing Search Results on User Intent

Giorgos Giannopoulos∗
supervised by Timos Sellis

NTU Athens -
IMIS, “Athena” R.C.

Greece
giann@dblab.ece.ntua.gr

ABSTRACT
Personalized retrieval models aim at capturing user inter-
ests to provide personalized results that are tailored to the
respective information needs. User interests are however
widely spread, subject to change, and cannot always be cap-
tured well, thus rendering the deployment of personalized
models challenging. In this doctoral work, we describe our
approach where we study ranking models from the aspect
of search intent. Our approach is query-centric. That is, it
does not rely on separate user search profiles/histories nor it
personalizes ranking based on topical similarity of queries.
Contrary, it examines the search behaviors/intents induced
by queries and groups together queries with similar such be-
haviors, forming search behavior clusters. Specifically, we
exploit user feedback in terms of click data to cluster the
queries. Each cluster is finally represented by a single rank-
ing model that captures the contained intents expressed by
users. Once new queries are issued, these are mapped to
the clustering and the retrieval process diversifies possible
intents by combining relevant ranking functions.

1. INTRODUCTION
Modern data collections and recordings of historic user

interaction pave the way for personalized information re-
trieval which exploits user profiles and historic usage data to
re-rank retrieved documents to serve individual information
needs. Personalized retrieval aims at computing a ranking
model for every user or groups of similar users. Different ap-
proaches, including the impact of short long-term search his-
tories [18, 19], context [12, 18], query categories [7, 21], and

∗This research has been co-financed by the European Union
(European Social Fund - ESF) and Greek national funds
through the Operational Program ”Education and Lifelong
Learning” of the National Strategic Reference Framework
(NSRF) - Research Funding Program: Heracleitus II. In-
vesting in knowledge society through the European Social
Fund.

search behavior and feedback [1, 8, 11, 13] have been stud-
ied. Additionally, collaborative filtering techniques for per-
sonalized search [19] and learning to rank-based approaches
[1, 6, 11, 14, 16, 23] also proved effective in many scenarios.
Many of the above techniques, though, are only applicable
to registered users of search engines. So, to have all users
benefit from the re-ranking they need to be perfectly disam-
biguated. This is, particularly on shared computers, an issue
and renders personalized web search difficult in practice.

In this work, we study an orthogonal approach to re-
ranking for web search which does not share these limita-
tions, so that all users benefit equally from re-ranking the
results. Our approach is based on the observation that ex-
isting approaches mainly focus on the retrieved content and
on users’ search histories, thus leaving an important aspect
unaddressed: The analysis of user search behavior, induced
by queries. Behavior is directly observable by user feedback
in form of clicks on result pages and allows to reason about
the search intent of the users. The intent therefore acts like
an unobserved, latent variable, captured by user behavior.

Figure 1 shows a motivating example based on two users
and their respective search histories. User 1 issues a query
for a new mobile phone. Her search history so far con-
tains only unrelated queries on IR research and cars. A
user-specific personalized model would have to resort to the
average user model for processing the query and possibly
return pdf documents (due to the user’s previous clicks on
papers) about phones. On the other hand, even though the
two users’ search histories are topically unrelated, in this
new query, user 1 could take advantage of user’s 2 search
history on cellphones. Finally, search behavior induced by
queries does not always depend on content. For example,
although user’s 2 queries about cellphones seem to form a
solid search history topic, however, they regard two distinct
subtopics: (a) searches about reviews/information on spe-
cific cellphones and (b) searches on financial information
about cellphone companies. In the first case, forum or video
results are expected to be more helpful, while in the second
case, results from news sites are more suitable. Thus, user’s
1 query about “new cellphone reviews” would benefit only
from user 2 search history on subtopic (a). This example
shows that, capturing search behaviors and exploiting them
to rerank search results goes beyond content or users and
depends, also, on the latent search intents within queries.

Given the above, our approach does not rely on user-
specific models but aims at capturing user search intent
by grouping queries that entail similar behavior. User 2
for instance shows a particular interest in watching online

"web search"

"ranking"

"search engines"
"latest movies trailers" "box office"

Need new cellphone, let's search:
"new cellphones reviews" "new cellphones video"

"samsung h55 review"

"htc s30 battery life"

"racing cars videos"

"opel astra forums"

"transformers actress"

"formula 1 calendar"

click on video results

click on forum treads

click on e-shops

"mobile stock market"

"samsung buy out"

User: 2
Topic: Cellphones

User: 2
Topic: Movies

User: 1
Topic: Cars

User: 1
Topic: IR research

Figure 1: Motivating example: Personalized user models aggregate search histories by topic (cellphones, cars,
etc.). Our approach groups queries based on behavior/intent to form a video cluster (green circle).

videos about movies and mobile phones, that is, she fre-
quently clicks on video results for these types of queries. Our
system models this behavior by grouping the video related-
queries. This clustering is independent of the user and treats
all queries and users the same. The final results proposed
to user 1 for her query will now consist of different media
types that have been associated with mobile phones in the
past (e.g. videos), hence, capturing the broad spectrum of
user behavior for queries related to mobile phones.

To build models for user intent, we propose to cluster
queries with respect to the user intent and learn a rank-
ing function for every cluster. Firstly, a ranking function
is learned for every query to capture the user behavior by
adaptation to user feedback given by click data. Secondly,
the ranking models are grouped so that the resulting clus-
ters correspond to similar user intents. Thirdly, a ranking
function is learned for each cluster to represent the contained
intent. At deployment time, queries are mapped to the clus-
tering to compute scores expressing how likely the intent of
the query is captured by the respective cluster. The final
ranking is then induced by a weighted linear combination of
ranking functions that are likely to cover the intent of the
user, given the query. Combining the ranking functions of
several clusters diversifies the results in terms of the cap-
tured intents. Experimentally, our approach captures user
intent better than baseline methods on a large sample from
the Yahoo! query log, achieving higher precision on top-
ranks compared to content-based baselines.

The roadmap of the presented doctoral work follows:

1. We model user search behavior utilizing query click-
through data (query, result list, result relevance judg-
ments) and a widely used machine learning model
(Ranking SVM). Specifically, we approaximate the
search intents induced by queries, by representing
clickthrough data in the learning model’s feature space
and recognizing groups of similar search behaviors.

2. We describe a baseline solution for training multi-
ple topic-specific ranking models and we introduce
two variations of our proposed framework for training
behavior-specific ranking models. We compare our
approaches with the topic-specific and other base-
lines, demonstrating the importance of taking search
behavior into account.

3. We are, also, currently working on extending our
proposed methods to other search settings. Specif-
ically, we work on adapting the concept of personal-
ized ranking function training on RDF data, where,
apart from result content, relations between resources

and schema should be taken into account. Also, we
plan to transfer the same personalization setting to
evolving data, e.g. name changing biological data.

The remainder is organized as follows. Section 2 reviews
related work. In Section 3 we present background informa-
tion and our method’s intuition. We describe our proposed
framework in Section 4. Section 5 reports shortly on the em-
pirical evaluation of our methods and Section 6 concludes.

2. RELATED WORK
In [9] the author proposes a topic-based refinement of the

PageRank algorithm that allows the offline computation of a
fixed number of PageRank vectors corresponding to certain
topic categories. The final result is a weighted combination
of these vectors, with weights depending on the similarity of
the query and the respective topic. In [17] the authors utilize
concept hierarchies, like ODP, to categorize queries and to
generate user profiles. Query results are re-ranked based
on those profiles using collaborative filtering techniques. By
contrast, our method does not rely on user profiles and is
independent of static topic hierarchies.

Another prominent strand of research is based on exploit-
ing historic user feedback. The impact of short-term versus
long-term histories has been studied by [19, 20] while [5, 18]
aim at capturing the context of the users, for instance by
taking documents on the virtual desktop into account. The
resulting models are essentially user profiles that are used
to expand future queries and to refine the retrieved results.
Compared to our method, these approaches focus on content
similarity and do not exploit collaborative user data.

Many approaches incorporate state-of-the-art machine le-
arning techniques to improve ranking results. [4] study mod-
ifications of ranking support vector machines to reduce the
error on top-ranks and to increase the importance of queries
with only a few relevant documents in the training sample.
In [14], the authors propose to learn multiple ranking func-
tions for different ranks which are aggregated to induce the
final ranking. By contrast, we propose to learn different
ranking functions for different behaviors and intents. Fur-
thermore, the above approaches do not take the inherent
relations between queries/clickthrough data into account.

The closest work to ours is [3] who propose to learn mul-
tiple ranking models by clustering queries based on the top-
ical information extracted by their results. They represent
queries by aggregating feature vectors which are then clus-
tered to obtain specific ranking models. The final ranking
for new queries is being made by combining the models.

Their work differs in several aspects, the two main differ-
ences being as follows: Firstly, the method in [3] relies on
pseudo feedback to extract the top results of each query and
does not distinguish between positive and negative judge-
ments. Secondly, the proposed approach computes the mean
feature representation of the results for a given query and
uses these averages to group queries. By contrast, we pro-
pose to cluster the ranking functions themselves. [25] ap-
ply K-Nearest Neighbor to find the closest training queries
to a new query. Then, they train a model based on these
queries to re-rank the results of the new one. Since this
approach is inefficient to run online, they propose approxi-
mations that transfer some of the computation offline. How-
ever, this method, similar to [3], clusters query results on the
feature space and not the search behaviors, as we propose.

3. BACKGROUND/METHOD INTUITION
In this section, we first present some background informa-

tion on the Ranking SVM model. Then, we discuss how to
exploit its properties to identify search behaviors.

3.1 Preliminaries
Let S be a training dataset consisting of queries, their

results, and relevance judgments. Without loss of general-
ity, we consider here 3 ranks of relevance judgments: r = 0
(irrelevant), r = 1 (partially relevant) and r = 2 (relevant).
Let, also, XεRd a feature space of dimensionality d. Features
in this space describe the query results and their matching
quality with the corresponding query. Those features may
be content-based (describing textual similarity between a
query and its result [24]). Some features may involve hy-
perlink information (i.e., pagerank values), or specific infor-
mation about the results such as the domain of the url or
the rank of the result in several search engines [11]. Also,
features may incorporate statistical information on user be-
haviour, e.g., deviation from average page viewing time [1].

So, our training dataset is of the form S = {(x1, r1), (x2, r2),
..., (xn, rn)}, where xi = (x1i, x2i, ..., xdi) is the feature vec-
tor that characterizes a query-result pair, ri is the relevance
judgment (rank) for the specific result i and n is the number
of query-result pairs in the dataset. Ranking SVM tries to
find a ranking function g(xi) that satisfies:

xi � xj ⇔ g(xi) > g(xj) (1)

where xi � xj denotes that result i has higher rank than
result j, i.e. ri > rj .

Considering function g as a linear function of xi then
g(xi) = 〈w · xi〉. Thus, Equation 1 is re-written as follows:

xi � xj ⇔ 〈w,xi − xj〉 > 0 (2)

Considering every result pair from the training dataset for
which xi � xj and introducing non-negative slack variables
for misranked results, the problem is formalized as an opti-
mization problem:

minimize:
1

2
‖w‖2 + λ

∑
ξij

subject to: 〈w,xi − xj〉 > 1− ξij , ∀xi � xj , ξij > 0 (3)

where ‖w‖ is the norm of w. Note that w is a weight vector
that quantifies how important is each feature for a specific
training on a specific dataset. This vector is normal to hy-
perplanes (defined by the points bpq where they cut through
the normal vector) that separate results of different ranks,
as shown in Figure 2. In Equation 3, the first term 1

2
‖w‖2

is related to the distance of the correctly ranked results that
are closest to the hyperplane. The second term

∑
ξij re-

lates to the error introduced by the misranked results. For
example, assuming that triangles should be placed (ranked)
on the right of the hyperplane defined by b11 and the circles
on the left, then: (a) 1

2
‖w1‖2 is related to the distance of

b11 from its closest rightmost triangles and from its closest
leftmost circles and (b)

∑
ξij is related to the distance of

b11 from its lefttmost triangles and from its rightmost cir-
cles. Finally, λ determines the importance of each of the
two terms in the training process.

x (word "acm" contained in result)

y (word "video" contained in result)

b11
b12

w1

w2

b21

b22

u1

v1

u2

v2

dA

dB

rank = 2
rank = 1
rank = 0

w1: vector trained for paper search
w2: vector trained for cellphone search

Figure 2: Trained weight vectors on feature space

3.2 Search Behavior and Ranking SVM
The example of Figure 2 gives a geometric interpretation

of the model. For simplicity, consider that the feature vec-
tors of the training data include only two features. Let fea-
ture x be the frequency of the word “acm” in the result text
and feature y be the frequency of the word “video” in the
result text. The shaded shapes represent results related to
paper searches, while the non-shaded shapes represent re-
sults related to cellphone searches. Squares correspond to
strongly relevant results, triangles to partially relevant re-
sults and circles to irrelevant results.

In this feature space, we train two ranking models ex-
pressed by weight vectors w1 and w2. These vectors corre-
spond to searches for papers and searches for cellphones, re-
spectively. The direction of each wi, i.e., the angle between
the vector and one of the axes, indicates how important each
training feature is for the process of result ranking. For ex-
ample, the angle u1 between vector w1 and x-axis is smaller
than the angle v1 between the vector and y-axis. This means
that a change in the value of feature x (frequency of word
“acm” in results) is more probable to induce a change in
the result’s rank than a change in the value of feature y
(frequency of word “cellphone” in results). So, for the par-
ticular training performed on clickthrough data from paper
searches, feature x is more important than y when ranking
query results. The opposite stands when training a vector
w2 on cellphone searches: feature y is more important than
x, as shown by the direction of w2.

The above example describes two different search behav-
iors, that is, specific search patterns followed by users for
specific categories of searches. We can see that search behav-
iors are not expressed in terms of content, but through the
feature space XεRd selected to represent the clickthrough
data (query results and their ranks/relevance judgments).
So, we can capture and exploit such search behaviors by
utilizing the distribution of the training clickthrough data
in the feature space. Next section describes our framework.

4. RANKING MODELS FOR USER INTENT

In this section we present our main contribution, rank-
ing models for user intent. Our work consists in three con-
tinuous approaches that revolve around the idea of captur-
ing search behaviors/intents and training ranking models on
them. Due to lack of space, we shortly describe the first two
and then we describe in detail the latest one.

In [26] we followed a first cut approach to the problem,
where we assumed that clustering historic queries on con-
tent similarity can capture search behaviors. To this end,
our method trained separate ranking functions, each one
using clickthrough data from one cluster. Then, each new
query was matched content-wise on the clusters and its re-
sults were reranked using the respective ranking functions,
weighted according to their cluster’s similarity to the query.

In [27] we exploited the geometric characteristics of the
Ranking SVM model in order to capture search behaviors.
Specifically, we approximated the weight vectors to be trained
by the models and we performed clustering on these ap-
proximations. The rest of the process is similar to [26], in
terms of per cluster ranking function training and reranking.
This method was, essentially, the precursor of the current
method, that we present next ([28]).

4.1 Method Analysis
In a nutshell, we aim at learning ranking functions for

similar queries, where similar refers to the latent user intent.
Figure 3 shows a simple two-dimensional visualization of the
problem setting, focusing on pdf (dimension x1) and video
(dimension x2) results. Different queries (e.g., racing cars
videos, web search) are visualized by relevant clicked (red
squares) and not clicked results (green circles) documents.
The task is to cluster the queries so that similar intents are
close with respect to some distance measure in the feature
space and, then, to train one ranking function per cluster.

x1 (pdf result)

x2 (video result)

w1

w2

rank = 1 (clicked)
rank = 0 (unclicked)

"new cellphone videos"

"racing cars videos"

 "samsung h55 review"

"formula 1 calendar"

"web search"

"ranking"

Figure 3: Visualization of the problem setting.

Since there is no ground-truth for the intrinsic cluster-
ing, the respective error of the ranking functions serves as a
makeshift for the missing performance measure at the clus-
tering stage. That is, if the error-rate of a ranking function
is high, the queries in the respective cluster are too diverse
to allow for a good fit; the goal is therefore to find a group-
ing of the queries such that the ranking models are well
adapted. Thus, a natural approach is to jointly optimize
the clustering and the ranking models.

Let K be the number of desired clusters. We intend to
find (i) K ranking models ~w1, . . . , ~wK , one for each cluster,
and (ii) find a clustering ~c1, . . . ,~cK with ckj = 1 if query
qj belongs to cluster k and ckj = 0 otherwise, that gives
rise to an optimal fit of the ranking models. The following
optimization problem realizes this task straight forwardly:

min
~wk,~ck,ξij

K∑
k=1

‖~wk‖2 + λk

n∑
`=1

ck`

∑
(i,j)∈Pq`

ξk
ij

s.t. ∀k, ∀(i, j) ∈ P(k) : 〈~wk, xi〉 ≥ 〈~wk, xj〉+ 1− ξk

ij

∀k, ∀(i, j) ∈ P(k) : ξk
ij ≥ 0

∀i, j, ` : ckickj + ckick` ≤ ckjck` + 1 (4)

∀k, ∀j : ckj ∈ {0, 1}

where we defined P(k) =
⋃

j:ckj=1 Pqj as the union of all

members of cluster k, and trade-off parameters λk > 0.
The above optimization problem suffers from major draw-

backs. Firstly, the optimization interweaves real and integer
variables; that is, directly solving the mixed-integer program
is expensive and one usually resorts to relaxing the binary
variables to the interval [0, 1] to obtain an approximate so-
lution. Secondly and more severely, the number of triangle
inequalities guaranteeing a proper clustering in Eq. (4) is
cubic in the number of queries and renders the optimiza-
tion infeasible at larger scales. Next, we present an efficient
approximation of the problem.

4.2 Learning to Rank User Intent
We now present a sequential model that approximates the

infeasible optimization problem and that can be solved effi-
ciently on large scales. The novel approach consists of three
stages and generates the desired ranking models for each
cluster of queries: Firstly, we learn a ranking function for
every query. Secondly, these ranking functions are clustered,
and thirdly, we learn a ranking function for each cluster us-
ing the original queries and documents.

4.2.1 Ranking Models for Queries
The initial step of the approximation consists in learning

a ranking model for every query. To this end we solve the
standard Ranking SVM for every query and the respective
preference relations assembled from the click data:

min
~w`,ξ`ij≥0

〈~w`, ~w`〉+ λ
∑
ij

ξ`ij

s.t. ∀(i, j) ∈ Pq` : 〈~w`, xi〉 ≥ 〈~w`, xj〉+ 1− ξ`ij .

In general, the trade-off parameter λ (Eq. 3) needs to be set
appropriately to obtain optimally adapted models. In our
large-scale experiments, tuning the parameters manually or
deploying model selection techniques like cross-validation is
not feasible due to the large amount of data. Anecdotal
evidence, however, shows that for binary representations and
features in the interval [0, 1], values around λ ≈ 1 are often a
reasonable choice. We thus use λ = 1 for the initial Ranking
SVM models and note that there is potentially room for
improvement. The result of this step is n ranking functions
~w1, . . . , ~wn, one for each query. The training features we
applied are presented in Table 1.

4.2.2 Clustering Ranking Functions
The goal of the second step of our approach is to group

similar ranking models together as they capture similar in-
tents. As the absolute locations of the ~wi are negligible and
only the direction of the vectors is of interest, the ranking
functions are `2-normalized by ~w ← ~w/‖~w‖ so that they
lie on the unit hyperball. The similarity of two ranking
functions ~w and ~w′ can now be measured by their cosine

Table 1: Feature categories
Textual similarity features

4 Sum of TFs of query terms in result title—URL—text—all
4 Lucene score between query and result title—URL—text—all

Result characteristics features

1 Result initial rank
4 Number of words in result title—url—text—all
1 Result URL length in characters

72 Result URL domain (boolean values)
83 Popular sites the result might belong to (boolean)

200 Top most frequent urls in the dataset

Result special words features

10 Special words in result URL (”forum”, ”pdf”, etc.)
10 Result site category (news, search, blog etc)

200 Top most frequent words in the dataset

which reduces to the inner product for normalized vectors,
cos(~w, ~w′) = 〈~w, ~w′〉. Unit vectors are usually modeled by
a von Mises-Fisher distribution [2], given by p(~x|~µ, κ) =
Zd(κ) exp{κ〈~µ, ~x〉} where ‖~µ = 1‖ and κ ≥ 0 and d ≥ 2 and

partition function Zd(κ) = κd/2−1/(2π)d/2Id/2−1(κ) where
Ir(·) denotes the modified Bessel function of the first kind
and order r. Applied to the n ranking functions ~w1, . . . , ~wn,
a mixture model of von Mises-Fisher distributions with K
components (clusters) has the density

f(~wi|~µ1, . . . , ~µK , ~κ) =

n∑
i=1

αcip(~wi|~µci , κci)

with mixing parameters αi with 0 ≤ αi ≤ 1 and
∑

αi = 1.
The latent variables ci ∈ {1, . . . , K} indicate the generating
components for the ~wi; that is, ci = k indicates that the
ranking function ~wi is sampled (generated) from the k-th
component p(·|~µk, κk). If the latent variables were known,
finding maximum likelihood estimates for the parameters
~µ1, . . . , ~µk and κ1, . . . , κk would be trivial. Since this is not
the case, we resort to a constrained Expectation Maximiza-
tion approach to jointly optimize the log-likelihood.

 "samsung h55 review"

"new cellphone videos"

"web search"

"ranking"

"racing cars videos"

"formula 1 calendar"

Search intent 1: video, review results
Search intent 2: research, papers

Figure 4: Query-specific models on the unit sphere.

4.2.3 Ranking Models for Clusters
Given the clustering induced by the latent variables ci

of the previous section, we now learn a ranking function
for each cluster. The approach is similar to learning the
initial ranking models for the queries, however, this time,
all queries in the cluster have to be taken into account. The
optimization for the k-th cluster can again be solved with
the Ranking SVM and is given by:

min
~wk,ξij≥0

〈~wk, ~wk〉+ λ
∑
ij

ξij

s.t. ∀(i, j) ∈
⋃

`:c`=k

Pq` : 〈~wk, xi〉 ≥ 〈~wk, xj〉+ 1− ξij .

4.3 Reranking
Once the ranking functions are adapted to the clusters,

our method can be deployed to rerank retrieved documents
for new queries. Our approach aims at diversifying possible

intents as the same query might end up in more than just
one cluster, for instance if users clicked on different media
types (e.g., videos, pdfs, etc.). Thus, the goal is to map
a new query to the clustering and combine the respective
ranking functions of the top matching clusters.

To this end, we represent historic queries together with
their positively judged results as pseudo documents which
are indexed and made searchable by a search engine. In our
implementation we used the Lucene1 IR engine, however,
other choices are straightforward. Given a new query q, the
Lucene scoring function is used to obtain historic queries
which are similar to q.

We select the top-u most similar historic queries and the
clusters they belong to. By doing so, we compute a weighted
mapping of the new query to the clustering as follows. Let
vj , 1 ≤ j ≤ u, be the scores for the top-u historic queries qj ,
these are `1-normalized and translated into cluster-scores sk,
1 ≤ k ≤ K, such that sqk =

∑
j:cj=k vj/

∑u
i=1 vi, where the

cj are the latent cluster memberships. That is, if a cluster
occurs more than once, the respective scores are aggregated.
Due to the normalization, the scores sqk act like probabil-
ities, quantifying the likelihood that cluster k contains the
intent expressed by query q.

Finally, the ranking of the documents for the query q is
assembled from the clustering by weighting the contribution
of each cluster k by its score sqk. Let rkj denote the ranking
of the j-th document by the ranking function of cluster k, the
final ranking score is given by linearly weighting the cluster
rankings rkj with the cluster importance sqk for query q:

score(q, j) =

K∑
k=1

sqkrqkj .

5. EVALUATION
We briefly report on the experimental results of our cur-

rent method, described above. More information can be
found in [26, 27, 28]. We have sampled, from the Yahoo!
query log, 76,037 queries posed by 453 distinct users. We
split the obtained data, that is query and top-10 results,
chronologically into 30,053 (40%) queries for training and
45,984 (60%) queries for test set. Ground-truth is given by
user clicks in terms of relevance judgments as described in
[11, 15]. This gives us a total of 96, 030 relevance judgments
for the training dataset and 144, 021 for the test set, aver-
aging to about 3.2 relevance judgments per query.

5.1 Baselines
We compare our method, denoted as Intent with four al-

ternative approaches for re-ranking search results: Firstly,
we deploy a single ranking SVM (Single) for all users which
is trained on all available training data and used to rank
the documents for the test queries. Secondly, we train an
SVM for every user (User) to capture state-of-the-art per-
sonalization approaches. According to [19] we expect the
User baseline to perform best while the Single baseline is
expected to be too simple to capture diverse behaviors.

Furthermore, we apply Content-1 which clusters queries
in the training set based on their content similarity and
learns a RSVM for each cluster which are finally combined
to re-rank documents for the test queries. Note that, except
for the clustering, the processing pipeline remains the same

1http://lucene.apache.org/

as ours; at the clustering stage, queries are grouped based
on their textual similarity including text from their positive
results (clicked documents). Finally, we apply a variant of
topical RankSVMs [3] (Content-2). The document repre-
sentation is extended by incorporating means and variances
as dimensions for each feature; the new representation is
computed by using the top-5 results per query. Note how-
ever that this baseline is not identical to [3] in the sense that
we use the standard RSVM for the optimization problems.

5.2 Ranking Performance
Table 2 presents MAP results. Unsurprisingly, learning

user specific models performs best, achieving about 14% pre-
cision increase compared to the a single model that serves
everyone. The setting resembles an ideal scenario and the
baselines Single and User constitute the lower and upper
performance bound, respectively. Note that a real-world de-
ployment of personalized user models would require perfect
disambiguation of users which is still an open problem.

By contrast, Content-1, Content-2, and Intent are user
independent and form groups of similar content or intent,
respectively. In that sense, they constitute realizable ap-
proaches. However, they differ significantly in terms of pre-
dictive performance: Content-2 is the weakest method al-
though it still increases the performance over the Single
baseline by 3.5%. Content-1 allows for improvements about
5.5%, while Intent achieves the highest increase, by 6.3%.

Table 2: Mean average precision.

Method MAP Increase
Single 0.709 -
User 0.806 13.7%

Content-1 0.748 5.5%
Content-2 0.734 3.5%

Intent 0.754 6.3%

At first sight our method seems to be outperformed by a
personalized solution. However, the latter is not always ap-
plicable. Consider, e.g., scenarios such as web search where
only a fraction of all users are registered and can be dis-
ambiguated only after the login. Including the personalized
user model thus mirrors an ideal but unrealistic scenario.
As an alternative for scenarios that do not allow personal-
ized methods, we propose to deploy ranking models for user
intent, since our method significantly increases MAP.

6. CONCLUSION
In this work, we propose a methodology for improving

the quality of ranking functions for web search by capturing
and exploiting latent search behaviors. The underlying idea
grounds on the observation that search behavior is not nec-
essarily content-dependent and we show that it can be used
to train more effective ranking models.

Our method clusters ranking models trained on search
queries and their results. The produced clusters represent
implicit search behaviors and are used to train ranking mod-
els for user intent. The experimental evaluation demon-
strates the effectiveness of our method compared to content-
based baselines. Also, our method is generally deployable
and does not rely on user disambiguation. It, thus, proves a
valid alternative for scenarios in which personalized models
cannot always be applied, such as web search.

There is room for improvements and extensions on sev-
eral aspects of our method. Our future work involves ex-
perimenting on the clustering dimensions construction pro-
cess, the clustering algorithm and metrics and on the query-
cluster matching and weighting process. Also, we want
to study how individual user search behaviors can be ex-
ploited in our framework, thus integrating our query-centric
method with user-centric and content-centric approaches.
Finally, after enhancing the current methods, we aim to de-
ploy/adapt them to different search scenarios, such as key-
word search on RDF graphs, where training and reranking
should take into account the structure (relations between
resources) and the schema of the data.

7. REFERENCES
[1] E. Agichtein, E. Brill, and S. Dumais. Improving web search ranking by

incorporating user behavior information. In Proc. of the ACM SIGIR
Conference, 2006.

[2] A. Banerjee, I. Dhillon, j. Ghosh and S. Sra. Clustering on the Unit
Hypersphere using von Mises-Fisher Distributions. Journal of Machine
Learning, 38(6):1345–1382, 2005.

[3] J. Bian, X. Li, F.-Li. Liu, Z. Zheng, and H. Zha. Ranking Specialization
for Web Search: A Divide-and-Conquer Approach by Using Topical
RankSVM. In Proc. of the ACM WWW Conference, 2010.

[4] Y. Cao, J. Xu, T.-Y. Liu, H. Li, Y. Huang, and H.-W. Hon. Adapting
ranking svm to document retrieval. In Proc. of the ACM SIGIR Conference,
2006.

[5] P.-A. Chirita, C.-S. Firan, and W. Nejdl. Summarizing local context to
personalize global web search. In Proc. of the ACM CIKM Conference, 2006.

[6] W. Chu, and S.-S. Keerthi. Support Vector Ordinal Regression. Neural
Computation, 19:792–815, 2007.

[7] Z. Dou, R. Song, J.-R. Wen, and X. Yuan. Evaluating the Effectiveness of
Personalized Web Search. IEEE TKDE, 21:1178–1190, 2008.

[8] S. Fox, K. Karnawat, M. Mydland, S. Dumais and T. White. Evaluating
implicit measures to improve web search. ACM TOIS, 23(2):147–168, 2005.

[9] T.-H. Haveliwala. Topic-sensitive PageRank. In Proceedings of the ACM
WWW Conference, 2002.

[10] R. Herbrich, T. Graepel and K. Obermayer. Large margin rank
boundaries for ordinal regression. Advances in Large Margin Classifiers, MIT
Press, 2000.

[11] T. Joachims. Optimizing search engines using clickthrough data. In Proc.
of the ACM SIGKDD Conference, 2002.

[12] J.-W. Kim, and K.-S. Candan. Skip-and-prune: cosine-based top-k query
processing for efficient context-sensitive document retrieval. In Proceedings
of the ACM SIGMOD Conf., 2009.

[13] S. Pandey, S. Roy, C. O. J. Cho, and S. Chakrabarti. Shuffling a stacked
deck: the case for partially randomized ranking of search engine results.
In Proceedings of the VLDB Conference, 2005.

[14] T. Qin, X.-D. Zhang, D.-S. Wang, T.-Y. Liu, W. Lai, and H. Li. Ranking
with multiple hyperplanes. In Proceedings of the ACM SIGIR Conference, 2007.

[15] F. Radlinski and T. Joachims. Query chains: Learning to rank from
implicit feedback. In Proceedings of the ACM SIGKDD Conference, 2005.

[16] F. Radlinski and T. Joachims. Active exploration for learning rankings
from clickthrough data. In Proc. of the ACM SIGKDD Conference, 2007.

[17] U. Rohini and V. Ambati. Improving Re-ranking of Search Results Using
Collaborative Filtering. Information Retrieval Technology, AIRS, 2006.

[18] X. Shen, B. Tan, and C. Zhai. Context-sensitive information retrieval
using implicit feedback. In Proceedings of the ACM SIGIR Conference, 2005.

[19] K. Sugiyama, K. Hatano, and M. Yoshikawa. Adaptive web search based
on user profile constructed without any effort from users. In Proceedings of
the ACM WWW Conf., 2004.

[20] B. Tan, X. Shen, and C. Zhai. Mining long-term search history to improve
search accuracy. In Proceedings of the ACM SIGKDD Conference, 2006.

[21] J. Teevan, S.-T. Dumais, and D.-J. Liebling. To Personalize or Not to
Personalize: Modeling Queries with Variation in User Intent. In
Proceedings of the ACM SIGIR Conference, 2008.

[22] G.-R. Xue, H.-J. Zeng, Z. Chen, Y. Yu, W.-Y. Ma, W. Xi, and W. Fan.
Optimizing web search using web click-through data. In Proceedings of the
ACM CIKM Conference, 2004.

[23] Z. Zheng, K. Chen, G. Sun, and H. Zha. A regression framework for
learning ranking functions using relative relevance judgments. In
Proceedings of the ACM SIGIR Conference, 2007.

[24] T. Qin, T.-Y. Liu, J. Xu, and H. Li. LETOR: A Benchmark Collection
for Research on Learning to Rank for Information Retrieval. Information
Retrieval Journal, 2010.

[25] X. Geng, T.-Y. Liu, T. Qin, A. Arnold, H. Li, and H.-Y. Shum. Query
dependent ranking using K-nearest neighbor. In Proceedings of the ACM
SIGIR Conference, 2008.

[26] G. Giannopoulos, T. Dalamagas and T. Sellis. Collaborative Ranking
Function Training for Web Search Personalization. In Proceedings of the
PersDB Workshop, 2009.

[27] G. Giannopoulos, T. Dalamagas, and T. Sellis. Search behavior-driven
training for result re-ranking. In Proceedings of the TPDL Conference, 2011.

[28] G. Giannopoulos, U. Brefeld, T. Dalamagas, and T. Sellis. Learning to
rank user intent. In Proceedings of the CIKM Conference, 2011.

