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Many physicochemical, materials, and biological systems whose dynamics is too slow to be 

addressed via conventional molecular dynamics (MD) simulations can be considered as evolv-
ing in time through infrequent transitions in a network of discrete states, each state providing 

a coarse-grained description of a domain in multidimensional configuration space. We briefly 

discuss how states can be defined starting from the detailed potential energy hypersurface of 
such a system and how rate constants for transitions between states can be estimated based 

on the theory of infrequent events. We then concentrate on tracking the evolution of a system 
as a succession of transitions between states. Two general approaches are introduced for this: 

Kinetic Monte Carlo simulation, and analytical solution of the master equation for the time- 

dependent probabilities of occupancy of the states. For the latter approach we outline how time 
autocorrelation functions can be computed under equilibrium and nonequilibrium conditions. 

We present examples from the computation of diffusivities of gases in zeolites and in glassy 

amorphous polymers. We then introduce the method of Dynamic Integration of a Markovian 
Web (DIMW), designed to track relaxation towards equilibrium from a narrow initial distribu-

tion among states by solving the master equation in a network of explored states that is pro-

gressively augmented on the fly. We present an application of the DIMW method to physical 
ageing in a glassy polymer. Finally, we outline how computation of the long-time evolution in 

a network of states can be simplified by “lumping” states into clusters of states. 

1 Introduction 

The dynamics of many physical, chemical, materials, and biological systems is slow be-

cause it proceeds as a succession of infrequent transitions between domains in their config-

uration space, which we shall call “states”. The states constitute “basins” of low potential 

energy with respect to the generalized coordinates spanning configuration space, or of low 

free energy with respect to a set of order parameters providing a coarse-grained descrip-

tion of the system. Each state contains one or more local minima of the the free energy. 

Transitions between states are infrequent events, in the sense that the mean waiting time 

for transition out of a state is long in comparison to the time required for the system to 

establish a restricted equilibrium distribution among configurations in the state. The entire 

configuration space can be tessellated into states. Representing each state in a coarse- 

grained sense by a point in configuration or in order parameter space and connecting all 

pairs of states hetween which a transition is possible, one obtains a graph, or network of 

states. Examples of phenomena that can be modelled as occurring through a succession 

of transitions in a network of states include diffusion of defects and impurities in metals 

and semiconductors;
1
 of gas molecules in amorphous polymers;

2
 of bulky hydrocarbons 

in microporous solids, such as zeolites;
3
 structural relaxation and plastic deformation in 
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glasses;4 phase transitions in molecular and atomic clusters;5 surface diffusion;6 protein
folding7; and chemical reactions.8

The possibility of coarse-graining dynamics into a sequence of transitions in a network
of states is of strategic importance for understanding and predicting macroscopic time-
dependent properties from atomic-level structure and interactions. The longest times that
can be simulated with atomistic MD on conventinal computational means are microsec-
onds. (Note, however, that millisecond-long MD runs on specialized hardware have been
reported recently.9) This is too short by many orders of magnitude in comparison with the
experimental time scales of most phenomena of interest. A more efficient strategy than
“brute-force” MD is to construct a network of states i and compute the rate constants k i→j

between them from atomic-level information. By definition, the rate constant k i→j is a
conditional probability per unit time that a transition to state j will occur, provided the
system is in state i.

Once states and interstate rate constants are known, the system evolution at the state
level can be tracked by solving the master equation:

∂Pi(t)

∂t
=
∑
j �=i

Pj(t)kj→i − Pi(t)
∑
j �=i

ki→j , or
∂P(t)

∂t
= KP(t) (1)

The transition rate constant ki→j is independent of time, thanks to the time scale sepa-
ration which makes the transition an infrequent event. 10, 11 The evolution of the system in
state space is a Poisson process.12 Pi(t) is the probability of occupancy of state i at time t.
According to Eq.(1) this changes as a result of influx of probability from other states and
efflux of probability to other states. State occupancy probabilities are normalized over all
n states of the system. The time-dependent vector P in the matrix representation of Eq.(1)
has all the Pi(t) as elements. The n × n rate constant matrix is defined by K ij = kj→i,
Kii = −∑j �=i ki→j . At very long times, the system will adopt its equilibrium probabil-
ity distribution among states, P(∞). This is a stationary solution of the master equation,
Eq.(1), by virtue of the condition of microscopic reversibility satisfied by the rate constants:

ki→jPi(∞) = kj→iPj(∞) (2)

These notes address the problem of how to solve the master equation, Eq. (1), and
learn about the long-time dynamics of a system evolving through a succession of infre-
quent transitions between discrete states. Sections 2 and 3 briefly discuss how states can
be identified and rate constants for transitions between states can be computed, given the
potential energy as a function of atomic coordinates and the masses of all atoms in the sys-
tem. Section 4 reviews the basics of Kinetic Monte Carlo (KMC) simulation for generating
stochastic trajectories consisting of long successions of jumps between states. Section 5
outlines a method for analytical solution of the master equation and computation of time
autocorrelation functions therefrom. Example applications of the KMC and master equa-
tion solution strategies to diffusion problems are presented in sections 6 (for xenon in the
zeolite silicalite) and 7 (for CO2 in a glassy poly(amide imide)). Section 8 addresses the
more complex problem of nonequilibrium relaxation of a system that is initially confined
to a small subset of states. States are not known a priori, but have to be charted out as the
system relaxes. We introduce the “Dynamic Integration of a Markovian Web” (DIMW)
method for solving the master equation in a network of states that is progressively aug-
mented “on the fly”. We apply DIMW to the very challenging problem of tracking struc-
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tural relaxation in a polymer glass. Finally, in section 9 we discuss a systematic approach
for “lumping” groups of states that communicate with each other through relatively fast
transitions into single “metastates” and thereby reducing the number of states needed for
the description of dynamics at long times.

2 Identifying States

States are regions of configuration space where the system is trapped for long periods
of time. Let f be the number of degrees of freedom needed to specify the microscopic
configuration of a system. For a classical system of N particles with periodic boundary
conditions described in full detail, f = 3N − 3. We will use the f -dimensional vector r to
denote the configuration of a system. We will also use x to denote the f -dimensional vector
of mass-weighted coordinates, with elements m1/2

l rαl with ml being the mass of particle
l (l = 1, 2, . . . , N ) and rαl being the position coordinate of particle l along direction α
(α = 1, 2, 3). Let V(x) be the potential energy of the system as a function of the mass-
weighted coordinates. A state is a domain in x-space surrounding a local minimum of
V(x).

For small f , an exhaustive determination of all minima and consequent identification
of all states and dividing surfaces between them is possible. For example, in the case
of low-occupancy diffusion of a monatomic sorbate in a zeolite represented as a rigid
framework,13 f = 3 (the three translational degrees of freedom of the sorbate within the
rigid zeolite). The volume of the asymmetric unit of the zeolite unit cell was discretized
into voxels of edge length approximately 0.2 Å. A steepest descent trajectory was initiated
at the center of each voxel, terminating in a local minimum of V(x). The minimization was
refined using a quasi-Newton algorithm. In this way, a “drainage pattern” was constructed
in three-dimensional space, leading to the local minima. The set of all voxels from which
the steepest descent construction terminated at a certain minimum was assigned to the
state of that minimum. Similarly, the dividing surface between two states i and j was
defined as the set of all faces (squares) shared by two voxels such that the steepest descent
construction from one of the voxels leads to minimum i, while that from the other voxel
leads to minimum j. An exhaustive identification of all states was simularly undertaken in
the work of Snurr et al.14 on the diffusion of benzene in the zeolite silicalite, where both the
zeolite framework and the sorbate molecule were represented as rigid. In this case, f = 6
degrees of freedom (three translational and three orientational of the benzene relative to the
framework) come into play. A very large number of insertions of the benzene at random
positions and orientations within the asymmetric unit was used as a first step. From each
configuration resulting from insertion that did not exceed a certain energy threshold, a
quasi-Newton minimization was initiated, leading to an energy minimum in V(x) in six-
dimensional configuration space, representing a sorption state. Increasing the number of
random insertions for the initial guess configuration did not lead to any other minima; this,
and the symmetry of determined minima, indicated that the calculation was exhaustive.

In more complex situations, where f is larger, the identification of states can be greatly
facilitated by geometric analysis. An example is provided by Greenfield’s study of methane
diffusion in glassy atactic polypropylene.15 Static configurations of the amorphous poly-
mer, constituting local minima of its potential energy, were used as a starting point. Within
each static configuration, the volume accessible to spherical probes of various radii smaller
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than the van der Waals radius of the penetrant of interest (methane) was analyzed using a
Delaunay tessellation and clustering algorithm.16 For large probe radius the accessible vol-
ume consists of relatively small disjoint clusters. As the probe radius decreases, accessible
volume clusters grow in size and some clusters merge at narrow “necks” of accessible vol-
ume. The position of each of these necks between a pair of clusters is used as an initial
guess for the position of the penetrant at the saddle point of the energy along the transi-
tion from a (meta)state of occupancy of one cluster to a (meta)state of occupancy of the
other. A saddle point of V(x) is computed from the geometrically obtained neck position
as follows: The center of the penetrant is placed at the neck position and a saddle point is
first calculated with respect to the three translational degrees of freedom of the penetrant,
keeping the configuration of the polymer fixed. Using this three-dimensional saddle point
as an initial guess, the number of system degrees of freedom with respect to which the
saddle point is calculated is progressively increased, by including more and more atoms of
the polymer in concentric spheres around the penetrant. This calculation goes on until the
saddle point energy becomes asymptotic with respect to inclusion of additional polymer
degrees of freedom.15 The saddle point searches can be performed using the Cerjan-Miller
type algorithm of Baker.17 Having obtained a multidimensional saddle point in both pene-
trant and matrix degrees of freedom, an entire transition path is constructed using Fukui’s
intrinsic reaction coordinate approach:18 Starting at the saddle point, the system is dis-
placed by a small step along the eigenvector corresponding to the negative eigenvalue of
the Hessian matrix of second derivatives ∂V/(∂x∂xT). Subsequently, a steepest descent
construction in V(x) is undertaken using small steps in x, until a local minimum of V(x) is
reached. Completing this construction on either side of the saddle point, i.e. with the initial
displacement first along the positive and then along the negative direction of the eigenvec-
tor, yields an entire reaction path between two (meta)states, in which different adjacent
clusters of accessible volume are occupied by the penetrant. This calculation has been ex-
tended by Vergadou to more complex multiatom penetrants, such as CO 2 in a poly(amide
imide) (see Figure 1).19

When no guidance is provided by geometry or crystal symmetry, the identification of
states is considerably more involved. Kopsias20 and Boulougouris21 addressed the problem
of finding connected minima in the full configuration space (f = 3N − 3) in order to
track structural relaxation in a glass. Given a minimum of V(x), they strove to find as
many as possible other minima connected to it via transition paths passing through a single
first-order saddle point of V(x). For this purpose, they undertook saddle point searches in
f -dimensional space, starting off along the lowest-curvature eigendirections of the Hessian
at the original minimum. Beyond a certain number of searches, no new saddle points were
located (the algorithm returned saddle points that had already been found); this was taken
as an indication that all relevant transitions out of the initial minimum (i.e., transitions
taking the system over reasonably low energy barriers), had been found. In Ref. 20 the
saddle point searches were conducted using the Baker algorithm, while Ref. 21 employed
the dimer method of Henkelman and Jónsson, which does not require second derivatives. 22

From each saddle point located in this way, a pair of steepest descent constructions was
undertaken in full configuration space using Fukui’s intrinsic reaction coordinate approach,
as described above. On one side the original minimum was recovered, while on the other
side the steepest descent construction led to a new minimum adjacent to the original one.
The procedure was repeated from each new minimum, in order to map out a network of

4



Figure 1. Geometric analysis of accessible volume in an amorphous poly(amide imide) configuration aimed at the
identification of states and transition paths for diffusion of CO2 at infinite dilution within the polymer. Analysis
with a spherical probe of radius rP = 1.28 Å reveals disjoint. elongated clusters of accessible volume. Analysis
with a smaller probe radius rP = 1.1 Å reveals “necks” of accessible volume connecting the original clusters.
The positions of the necks (encircled in the figure) are used as initial guesses for the center of mass position of
the penetrant at the saddle point along an elementary transition path.

minima, or “states”.
In many problems it is a good approximation to assume that the reaction coordinate

taking the system from a state to another state is shaped by a relatively small subset of
“primary” degrees of freedom, the remaining degrees of freedom fluctuating rapidly and
achieving a constrained equilibrium distribution subject to the values of the primary set.
Then, system “states” can be defined as local minima of the potential of mean force with
respect to the primary subset of degrees of freedom. Although calculating the potential
of mean force is generally a challenge for molecular simulations, the reduction of dimen-
sionality in passing from the full configuration space to the subspace of primary degrees
of freedom greatly facilitates the definition of states and transitions between them. An
example of such an approach based on the potential of mean force is provided by Forester
and Smith’s23 calculations on the diffusion of benzene in silicalite. These authors used a
unidimensional reaction coordinate, corresponding to the projection of the center of mass
position of the sorbed benzene on the axes of straight or sinusoidal channel segments in the
zeolite. The latter axes were taken as rectilinear, for simplicity. All other degrees of free-
dom (translational of the benzene in directions transverse to the channel axis, orientational
of the benzene, and vibrational of the surrounding zeolite framework) were integrated over
at each position along an axis. The potential of mean force was computed by dragging the
benzene along the channels, through the “blue moon ensemble” MD method. States were
readily identified as local minima of the potential of mean force (see also section 3).

3 Calculating Rate Constants

Once states have been defined, the transition rate constants k i→j can be computed by a
variety of methods. We briefly outline some of these methods here. For a more thorough
treatment, the reader is referred to standard texts on molecular simulation. 24
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If transitions are subject to relatively low barriers (say, up to 7 kBT ), such that rate
constants ki→j are relatively high (say, up to ns−1), then rate constants can be estimated
by MD simulation. All one needs is a technique to map every configuration recorded in
the course of a MD trajectory onto a state. Very often, when states are defined as regions
around local minima in configuration space, this mapping is accomplished by direct energy
minimization leading to the closest energy minimum or “inherent structure”. 25 A reduced
trajectory of states visited is thus accumulated in parallel with the MD trajectory. Switches
between states can readily be identified along this reduced trajectory. Rate constants can
be computed by statistical analysis of the reduced trajectory, capitalizing on the exponen-
tial distribution of waiting times that characterizes Poisson processes. A simple method
that can be used for this purpose is “hazard plot analysis”, outlined in the following para-
graphs.26

We first introduce some definitions that are generally applicable to any stochastic pro-
cess involving infrequent transitions. The particular example of stochastic process we will
have in mind is that of exiting a specific state i in the network of states we have introduced
in section 1, once the system has entered that state. The rate constant for this process is
ki→ =

∑
j �=i ki→j . For the stochastic process considered, let P̂ (t) be the probability of

having undergone a transition at time t. In our particular example, P̂ (t) can be interpreted
as the cumulative distribution function of residence (or “waiting”) times within state i.
The hazard rate, ĥ(t), is defined such that ĥ(t)dt equals the (conditional) probability that
a system (in an ensemble of systems governed by the stochastic process) which has not
undergone a transition until time t, will undergo a transition at time t. From the definitions
of P̂ (t) and ĥ(t), the following differential equation is satisfied:

P̂ (t+ dt) = P̂ (t) +
[
1− P̂ (t)

]
ĥ(t)dt (3)

or

dP̂ /dt =
[
1− P̂ (t)

]
ĥ(t) (4)

Eq. (4) must be solved with initial condition P̂ (0) = 0. The solution is

P̂ (t) = 1− exp

⎡
⎣−

t∫
0

ĥ(t′)dt′ =

⎤
⎦ = 1− exp

[
−Ĥ(t)

]
(5)

where we have defined the cumulative hazard Ĥ(t) as

Ĥ(t) =

t∫
0

ĥ(t′)dt′. (6)

For a Poisson process, the hazard rate ĥ(t) is a constant, independent of time. In our ex-
ample of exiting state i, ĥ(t) = ki→, a constant at sufficiently long times. This is because,
once the system enters state i which is in a region surrounded by high energy barriers, it
will quickly thermalize (distribute itself according to the requirements of a restricted equi-
librium) within state i and forget how it came there. Exit from state i is an infrequent
event because of the time scale separation between the correlation time for thermalizing
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within state i and the mean waiting time for escaping state i. Note the Markovian charac-
ter imparted to the process by this time scale separation. For a Poisson process, then, the
cumulative distribution function of waiting times has the form:

P̂ (t) = 1− exp (−ki→t) (7)

and the probability density of waiting times is exponential:

ρ̂(t) = ki→ exp (−ki→t) . (8)

The mean waiting time in state i is readily computed from Eq. (8) as k−1
i→.

In view of these definitions and properties of Poisson processes, the following compu-
tational procedure emerges for computing the rate constant k i→ from the reduced trajectory
(sequence of visited states) onto which a MD run has been mapped. The MD run must be
long enough to sample a large number of transitions out of state i. One goes through the
reduced trajectory and measures all time intervals t l between an entry into state i and the
immediately following exit from i to any other state. One orders these residence times as
t1 ≤ t2 ≤ . . . ≤ tn, where n is the total number of visits to state i observed in the reduced
trajectory. Clearly, based on the reduced trajectory, the quantity P̂ (tl) = l/n, 1 ≤ l ≤ n,
provides an estimate of the probability that the residence time in state i will not exceed t l,
i.e. an estimate of the cumulative probability distribution of waiting times at t l. One forms
an estimate of the cumulative hazard at tl, Ĥ(tl), as

Ĥ(tl) =
1

n
+

1

n− 1
+ . . .+

1

n− l + 1
(9)

One then plots Ĥ(tl) as a function of tl for l = 1, 2, . . . n. At short times the result-
ing hazard plot may display some curvature, associated with fast recrossing events of the
dividing surfaces between state i and its surrounding states. At long times, however, if
time scale separation holds, the hazard plot becomes linear. The slope at long times is the
sought rate constant ki→. Individual rate constants ki→j can readily be obtained from ki→
as

ki→j = ki→
Number of times exit from i occurred to j

n
(10)

The rationale behind Eq.(9) is that, for a Poisson process, the cumulative hazard Ĥ(t)
is related to the cumulative probability distribution of residence times P̂i(t) via Eqs. (5)

and (6), hence Ĥ(t) = − ln
[
1− P̂ (t)

]
. The reader can readily verify that the right-hand

side of Eq.(9) is an estimate of − ln(1− l/n) � ∫ l/n

0
1

1−xdx.
It is advisable to make sure that rate constants extracted from hazard plot analysis are

invariant to the frequency of conducting minimizations along the MD trajectory to form the
reduced trajectory; to ensure that no transitions are missed, the latter frequency, as well as
the frequency of recording configurations along the MD trajectory, should be considerably
higher than the rate constant of the fastest transition taking place in the system.

Figure 2 displays an example of a hazard plot for transition out of a state (basin of the
potential energy) of a glassy binary Lennard-Jones mixture at low temperature. 27
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Figure 2. Hazard plot for transitions out of a given state (basin of the potential energy) for a glassy binary
Lennard-Jones mixture at reduced density 1.1908 and temperature 9 K, as computed from a canonical MD sim-
ulation. Two sets of calculations are presented, one using a 0.8 ps interval between minimizations (squares) and
another one using a 2 ps interval between ninimizations (crosses) in forming the reduced trajectory (sequence of
states visited as a function of time).

When energy barriers between states are high in relation to kBT and rate constants are
correspondingly low, transitions between states cannot be sampled adequately by straight-
forward MD. One way to get around this problem is to resort to temperature-accelerated
dynamics (TAD) simulations, as originally proposed by Voter and collaborators. 28 MD
simulation at a higher temperature is used to access transition pathways. Waiting times ob-
tained at the higher temperature are extrapolated down to the temperature of interest using
the Arrhenius dependence of rate constants on temperature. The method has been used to
great advantage in surface diffusion problems. 28 Tsalikis et al.29 have combined micro-
canonical simulations at various energy levels with the histogram reweighting method to
obtain rate constants in the spirit of TAD for transitions between basins in configuration
space in the course of structural relaxation of a glassy binary Lennard-Jones mixture.

Infrequent event analyses based on dynamically corrected transition-state theory have
found widespread use in the computation of rate constants from simulations. These analy-
ses are based on the theory of Bennett30 and Chandler10, which was extended to multistate
systems by Voter and Doll.6 Let us assume that the boundary of state i in configuration
space is described by an equation Ci(x) = 0, where Ci is a continuous, differentiable
function of the mass-weighted coordinates x. C i(x) < 0 for all points in state i, while
Ci(x) > 0 for all points outside state i. Then, ni = ∇Ci(x)/ |∇Ci(x)| is a unit vector
normal to the boundary surface of state i at point x pointing towards the outside of the
state. Furthermore, the function hi(x) = 1 −H (Ci(x)), with H(x) being the Heaviside
step function, equals 1 if x belongs to state i and zero otherwise. The rate constant for
transitions from i to any other state j can be expressed as
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ki→j(t) =
〈ni (x(0)) · ẋ(0)δ (Ci (x(0))) |∇Ci (x(0))|hj (x(t))〉

Pi(∞)
(11)

In equation 11 the average is taken over all equilibrium dynamical trajectories of the
system. The numerator has nonzero contributions from those trajectories which cross the
boundary (hyper)surface of state i at time 0 and find themselves in state j after time t. The
averaged quantity in the numerator is the component of the mass-weighted velocity ẋ at
time 0 normal to the boundary surface of state i times a delta function along the component
of x normal to the boundary surface which requires that the system be on that surface at
time 0. The denominator is the equilibrium probability of occupancy of state i (compare
equation 2). Clearly, the right-hand side of Eq.(11) has dimensions of inverse time, as
expected of a rate constant. As discussed by Chandler10 and Voter and Doll,6 thanks to the
time scale separation making exit from state i an infrequent event, k i→j will practically
reach a time-independent plateau value at times sufficiently longer than the time required
for internal equilibration within state i.

It is useful to consider the rate constant ki→j given by Eq.(11) as a product of a
transition-state theory estimate of the rate constant for exiting state i times a dynamical
correction factor:

ki→j(t) = kTST
i→ fd,i→j (12)

Transition state theory rests on an approximation: It assumes that, whenever the system
finds itself on the boundary surface of state i with momentum directed towards the out-
side of state i, then a successful transition out of state i will occur. In reality, this is not
necessarily the case because of fast recrossings of the boundary surface at short times.
Mathematically, kTST

i→ is obtained by replacing hj (x(t)) in the numerator of Eq.(11) with
1 − hi(x(0

+)) = H (ni(x(0)) · ẋ(0)). The averaging over configuration and momentum
space can be separated, the momentum-space average reducing to a Boltzmann-weighted
mean of the component of the mass-weighted velocity vector normal to the boundary sur-
face over the positive semiaxis. The result is:

kTST
i→ =

1

(2βπ)1/2

∫
bound. surf. of state i

df−1x exp [−βV(x)]
∫

state i

dfx exp [−βV(x)]
(13)

The reader is reminded that x is the vector of mass-weighted coordinates of the system.
The dynamical correction factor fd,i→j , on the other hand, emerges as the ratio:

fd,i→j =
〈ni(x(0)) · ẋ(0)δ [Ci(x(0))] |∇Ci(x(0))| hj(x(t))〉

〈ni(x(0)) · ẋ(0)δ [Ci(x(0))] |∇Ci(x(0))| [1− hi(x(0+))]〉 (14)

which can be simplified to

fd,i→j =
〈ni(x(0)) · ẋ(0)δ [Ci(x(0))] |∇Ci(x(0))| hj(x(t))〉

1
2 〈|ni(x(0)) · ẋ(0)| δ [Ci(x(0))] |∇Ci(x(0))|〉

(15)
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The numerator in Eqs. (14) and (15) for fd,i→j is an average over all dynamical tra-
jectories crossing the boundary of state i which ultimately thermalize in state j. The de-
nominator in Eq. (14) is an average over all dynamical trajectories crossing the boundary
surface of state i in an outward direction. The factor 1/2 and the absolute value of the
component of velocity along the normal to the boundary surface in Eq. (15) stem from the
fact that the latter component is symmetrically distributed around zero. Trajectories initi-
ated on the boundary surface thermalize in a destination state within a correlation time that
is much smaller than (kTST

i→ )−1 and therefore their sampling entails modest computational
cost. A simple sampling scheme for implementing Eq. (15) is discussed in Ref. 6.

Interestingly, in this multistate formulation for the calculation of rate constants, due
to Voter and Doll,6 transition state theory is applied to the total efflux from origin state i
(see Eq. (13)). The destination state j enters only through the dynamical correction factor
fd,i→j , computed from short dynamical trajectories initiated on the dividing surface, via
Eqs. (14) or (15). For adjacent states i and j that share parts of their boundary surfaces,
fd,i→j starts off high (equal to the Boltzmann-weighted fraction of the boundary surface
of i that is shared with j) and quickly decays with time to an asymptotic value due to
dynamical recrossing and fast correlated multistate jumps. For nonadjacent states i, j the
dynamical correction factor fd,i→j starts off at 0 and quickly rises to an asymptotic value.
This describes transitions where the system crosses the boundary surface of i, spends a
short time in one or more intermediate states without thermalizing in them, then enters j,
which is nonadjacent to i, and ultimately thermalizes there. Such events are referred to as
fast correlated multistate jumps.

The transition-state theory expression for the rate constant for exiting state i, k TST
i→ ,

Eq. (13), emerges as the product of half the mean absolute value of a component of the
(mass-weighted) velocity along one direction in configuration space times a ratio of two
configurational integrals: one taken over the boundary surface of the origin state i, and
another one taken over the entire state i. Clearly, the ratio of configurational integrals has
the physical meaning of a conditional probability that the system will find itself on the
boundary surface, provided it is allowed to sample state i according to its equilibrium dis-
tribution. Instead of configurational integrals, one may consider the partition function Q i

of the system confined in the origin state i, as an integral over f -dimensional configuration
space within state i and over f -dimensional momentum space; and the partition function
Q†

i of the system confined to the boundary surface of state i, as an integral over the f − 1
dimensions of that surface in configuration space and over the f − 1 dimensions of mo-
mentum space corresponding to moving within the surface, but not normal to it. Then, the
expression for ki→ can be rewritten as

kTST
i→ =

kBT

h

Q†
i

Qi
(16)

where the factor h takes care of the different dimensionalities of the phase spaces to which
the two partition functions refer. Eq. (16) is applicable beyond the classical analysis
adopted here, in systems where quantum mechanical effects are important. For a system
under constant pressure, where volume fluctuations are important in effecting transitions
out of state i, Qi and Q†

i must be interpreted as isothermal-isobaric partition functions.
Recalling the connection between Gibbs energy and isothermal-isobaric partition function,

10



Eq. (16) can be recast in the form

kTST
i→ =

kBT

h
exp

[
−
(
G†

i −Gi

kBT

)]
(17)

An example application of Eqs. (13) and (15) to the calculation of dynamically cor-
rected rate constants can be found in Ref. 13. There, elementary transitions of Xe and SF 6

in the pores of the zeolite Silicalite-1 were analyzed with the purpose of computing the
self-diffusivity of these molecules at low occupancy. An inflexible model was invoked for
the zeolite, allowing all calculations to be carried out in three dimensions (f = 3). States
and boundary surfaces were mapped out explicitly as sets of voxels and pixels, respec-
tively, after discretization of the intracrystalline space in the zeolite (see section 2). The
configurational integrals in Eq. (13) were computed by Monte Carlo integration in these
voxels and pixels.

When state i is surrounded by high potential energy ridges relative to kBT all along
its boundary surface, transitions between nonadjacent states are improbable. A transition
state estimate between adjacent states i and j can be obtained by analogy to Eqs. (13) and
(17) as

kTST
i→j =

1

(2βπ)1/2

∫
sep. surf. between states i and j

df−1x exp [−βV(x)]
∫

state i

dfx exp [−βV(x)]
(18)

kTST
i→j =

kBT

h
exp

[
−
(
G†

ij −Gi

kBT

)]
(19)

In Eq. (18), the configurational integral in the numerator is taken over the part of the
boundary surface of i that is common with the boundary surface of j, which we will call
the separating surface between i and j. In Eq. (19), G †

ij symbolizes the Gibbs energy of
the system confined to that separating surface.

In many solid-state problems, transition between i and j is possible only through a
narrow passage in the dividing surface, surrounding the first-order saddle point (x †

ij , ε
†
ij)

between the configurations (xi, εi) and (xj , εj) of the two local energy minima, the en-
ergy being too high ouside this narrow passage. Here ε symbolizes the strain tensor with
respect to a reference spatial extent of the system, usually taken as that characterizing the
origin state i. Under given applied stress tensor σ, this strain tensor may well be different
between the origin state, the destination state, and the saddle point. When all the proba-
bility flux of the transition is directed through such a narrow, high-energy passage, for the
purpose of computing the configurational integrals appearing in Eq. (18) one can invoke a
quasiharmonic approximation, i.e. replace the potential energy with its Taylor expansion
to second order with respect to x around a stationary point (saddle point for the numer-
ator, minimum for the denominator) under the current volume of the system. The Gibbs
energies in Eq. (19) are then estimated as

Gi � Vi +Avib
i − Viσ:εi (20)
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G†
ij = V†

ij +A†vib
ij − Viσ:ε

†
ij (21)

Here Vi is the potential energy at the minimum corresponding to state i and V †
ij is the

potential energy at the saddle point corresponding to the transition state. V i is the volume
at the reference configuration used for measuring strain, usually taken as that of the origin
state i, εi is the strain tensor at the origin state and ε†ij is the strain tensor at the saddle

point. Avib
i is a vibrational Helmholtz energy calculated from the angular frequencies ω (l)

i

of the normal modes of the system at the energy minimum of the origin state, while A †vib
ij

is a vibrational Helmholtz energy calculated from the angular frequencies of the normal
modes ω†(l)

ij at the saddle point:

Avib
i = −kBT ln

[
f∏

l=1

exp(−�ω
(l)
i /(kBT ))

1− exp(−�ω
(l)
i /(kBT ))

]
(22)

A†vib
ij = −kBT ln

[
f−1∏
l=1

exp(−�ω
†(l)
ij /(kBT ))

1− exp(−�ω
†(l)
ij /(kBT ))

]
(23)

The spatial extent of the system at the minimum corresponding to the origin state is set
based on the condition that Gi, as defined in Eq. (20), have a minimum with respect to the
system dimensions under the applied stress σ. Similarly, the spatial extent of the system
at the saddle point is set based on the condition that G†

ij , as defined in Eq. (21), have a
minimum with respect to the system dimensions under the applied stress σ. 20 Kopsias20

and Boulougouris21 have invoked the quasiharmonic approximation approach to compute
rate constants for elementary transitions in configuration space corresponding to structural
relaxation of a Lennard-Jones and of an atactic polystyrene glass.

When all normal mode angular frequencies are very low relative to kBT/� and volume
changes are negligible between the origin state and the transition state, the expression for
the rate constant obtained from Eqs. (19) - (23) reduces to

kTST
i→j =

1

2π

f∏
l=1

ω
(l)
i

f−1∏
l=1

ω
†(l)
ij

exp

[
−V†

ij − Vi

kBT

]
(24)

Eq. (24) has been proposed originally by Vineyard 1 in connection with the elementary
jumps executed by an isotopic atom in the course of its self-diffusion in a solid lattice.

As pointed out in section 2, in many problems it suffices to define states, transition
paths, and dividing surfaces in the space of a few, slowly evolving degrees of freedom
(coarse-grained variables or “order parameters”), rather than in the full 3N−3-dimensional
configuration space of the model system (assumed here to be characterized by periodic
boundary conditions). In these cases, the transition-state theory estimate of the rate con-
stant kTST

i→j is obtainable from Eq. (18) with f being a small number, x being the vector
of (mass-weighted) coarse-grained variables and V being a potential of mean force with
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respect to these variables. For f ≤ 3 it is feasible to map out this potential of mean force as
a function of the coarse-grained variables. This provides a free energy profile (for f = 1)
or landscape (for f > 1) that is useful for visualizing the transition.

In such lower-dimensional formulations, the configurational part of the Gibbs (or
Helmholtz, in cases where volume changes are not important for the transition) energy dif-
ference G†

ij −Gi appearing in Eq. (19) can be obtained through any statistical mechanics-
based method designed for the computation of free energy differences. Free energy per-
turbation methods31, 24, 32 offer themselves for this purpose. As the free energy barriers
involved are typically large relative to kBT (otherwise the phenomenon studied would
not be an infrequent event), biased sampling techniques have to be invoked. A general
strategy is umbrella sampling, wherein histograms of the relative free energy are accumu-
lated through Boltzmann inversion of the probability density of coarse-grained variables
within small overlapping windows in the space of coarse-grained variables, and different
histograms are patched together to obtain the entire free energy landscape.

An example calculation of a Gibbs energy profile via umbrella sampling Monte Carlo
simulation, based on work by K. Binder et al., is shown in Figure 3. The model system is an
Ising model with coupling constant J between neighboring spins, consisting of L×L×L
spins arranged on a simple cubic lattice in three dimensions. Initially, the system is in
a phase with all spins “down” at a temperature of T = 0.6Tc, lower than the critical
temperature Tc � 4.51J/kB for order- disorder transition. Then, a magnetic field B =
0.55J is applied, rendering the initial phase metastable with respect to its counterpart with
all spins “up”. A first order phase transition ensues, which takes place via a nucleation
and growth mechanism. Nuclei appear in the initial phase, each nucleus consisting of a
cluster of “up” spins connected through nearest neighbor interactions. The Gibbs energy
ΔG(n) for the formation of a nucleus of size (number of spins) n was accumulated by
Boltzmann inversion of the size distribution of the nuclei. In addition, the Gibbs energy
ΔG(nmax) for the largest nucleus in the system to be of size nmax was accumulated.
The two functions are shown in Figure 3. ΔG(n) is system-size independent, while the
barrier in ΔG(nmax) is reduced with increasing system size and would be expected to
become very small for very large systems. This means that the new phase would nucleate
very fast in a very large system. The barriers ΔG∗(n) and ΔG∗(nmax) are related via
ΔG∗(nmax) = ΔG∗(n)− kBT ln(L3).33

A related strategy is blue moon ensemble simulation, invoked by Forester and Smith 23

in their calculations of diffusion of benzene in the zeolite silicalite-1, as mentioned in
section 2 (see Figure 4).

In recent years, a variety of advanced methods have been proposed for calculating free
energy profiles along a coarse-grained variable or reaction coordinate. One such method
is flux-tempered metadynamics,34 based on the metadynamics method introduced by Laio
and Parrinello.35 Metadynamics entails molecular dynamics simulation in which a repul-
sive Gaussian potential in a few selected coarse-grained variables is periodically added to
the potential energy function of a system, to encourage its escape from the vicinity of local
free energy minima with respect to these coarse-grained variables. If uniform sampling of
the space of coarse-grained variables is achieved, the free energy can be estimated from
the sum of added Gaussian potentials.

A general, essentially exact, but computationally intensive method for computing tran-
sition rate constants between two known states in configuration space is transition path
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Figure 3. Gibbs energy profile for nucleation in a three-dimensional Ising model system consisting of L× L ×
L sites arranged on a cubic lattice, as computed from umbrella sampling Monte Carlo simulations using spin
inversions as the only moves. (a) A system containing only one nucleus. (b) A system containing multiple nuclei,
the largest of which has size nmax. (c) Gibbs energies ΔG(n) and ΔG(nmax) as functions of n and nmax,
respectively. The barrier heights encountered in these functions are indicated by an asterisk. See text for details.

sampling, developed by Chandler and collaborators. This method is particularly useful in
complex fluid systems, where the variables participating in the reaction coordinate are dif-
ficult to anticipate. The method samples dynamical trajectories connecting the two states.
These trajectories are generated and manipulated using importance sampling techniques.
We will not dwell on this method here, as detailed information can be found in a number
of excellent reviews.36, 37

4 Kinetic Monte Carlo Simulation

We now turn to the question of how to track the temporal evolution of a system evolving
through a sequence of infrequent events, once we know the states i, the transitions between
them, and the interstate rate constants ki→j .

A widely used strategy is to generate a large number of stochastic trajectories of the
system, conforming to the master Eq. (1). Each trajectory consists of a sequence of tran-
sitions between states. The transitions take place at times which are chosen by generation
of pseudorandom numbers. The method is known as Kinetic Monte Carlo (KMC) simula-
tion. The earliest application of KMC is thought to be Beeler’s 1966 simulation of radiation
damage annealing, although the term “kinetic Monte Carlo” was not widely adopted before
1990.38

The usual implementation of KMC relies on the following properties of Poisson pro-
cesses:

• If a number of Poisson processes occur in parallel in the same system with rate con-
stants ki, they comprise a Poisson process with rate constant k =

∑
i ki.
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Figure 4. Configurational Helmholtz energy (potential of mean force) profile for a sorbed benzene molecule along
the straight channel of the zeolite Silicalite-1, as computed by blue moon ensemble MD simulations, shown as a
broken line.23 The potential energy is measured in kJ mol−1, The horizontal axis (reaction coordinate) measures
the position of the center of mass of the benzene molecule projected along the axis of the channel, in Å, at room
temperature. This calculation is based on a flexible model, incorporating the vibrational degrees of freedom of
the zeolite. The global minimum near the center of the graph corresponds to the molecule residing within an
intersection of the straight channel with a zigzag channel. Shallower minima are observed in the interior of the
straight channel segments. Note that barriers in the potential of mean force are on the order of tens of kJ/mol,
indicating that translational motion along the channel will proceed as a sequence of infrequent jump events. The
continuous line with the points displays the derivative of the potential of mean force with respect to the reaction
coordinate. This is the force needed to hold the system at a specific value of the reaction coordinate, computed
via the blue moon ensemble method. The Helmholtz energy profile was obtained via numerical integration of this
force.

• The waiting time of a Poisson process with rate constant k is exponentially distributed,
with mean k−1 (see Eq.(8) and associated discussion).

• If ξ is a continuous random variable that is uniformly distributed in [0,1), then the
random variable Δt = − ln(1− ξ)/k follows the exponential distribution with prob-
ability density ρ̂(Δt) = k exp(−kΔt).

To begin the KMC simulation, a large number N >> n of independent walkers are
deployed among the states of the system, according to a prescribed initial probability distri-
bution among states, Pi(0), i = 1, 2, . . . , n. For a system in equilibrium, Pi(0) = Pi(∞).
(An easy way to generate a sample of a discrete or continuous random variable with pre-
scribed probability distribution is to sample uniformly distributed pseudorandom values
∈ [0, 1) for the cumulative distribution function and then find the inverse of this function
at each of the sampled values. The prescription given above for sampling an exponentially
distributed variable relies on the same principle.) We will use the symbol N i(t) to denote
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the number of walkers that find themselves in state i at time t. Initially, N i(0)/N � Pi(0).
After initialization (t = 0), the KMC simulation proceeds according to the following steps:

(i) For each state i that is occupied at the current time t, calculate the expected fluxes
Ri→j(t) = Ni(t)ki→j to all states j to which state i is connected. Also, compute the
overall flux R(t) =

∑
i

∑
j Ri→j(t) and the probabilities qi→j(t) = Ri→j(t)/R(t).

(ii) Generate a uniformly distributed pseudorandom number 39 ξ ∈ [0, 1). Choose the
time for occurrence of the next transition in the network of states as Δt = − ln(1 −
ξ)/R(t). Choose the type of the next transition by picking one of the possible transi-
tions i → j according to the probabilities qi→j(t).

(iii) Of the Ni(t) walkers present in state i, pick one with probability 1/N i(t) and move
it to state j.

(iv) Advance the simulation time by Δt. Update the array, keeping track of the current
positions of all walkers to reflect the implemented transition. Update the occupancy
numbers Ni(t+Δt) = Ni(t)− 1 and Nj(t+Δt) = Nj(t) + 1.

(v) Return to step (i) to implement the next transition.

The outcome from performing this stochastic simulation over a large number of steps is
a set of trajectories for all N walkers. Each trajectory consists of a long sequence of tran-
sitions between states of the network. Time-dependent system properties are estimated as
ensemble averages over all trajectories at specific times. For example, if states correspond
to sites in a three-dimensional network where a molecule can reside, one can calculate the
mean square displacement along each one of the three coordinate directions as a function
of time by averaging over the trajectories, and hence obtain the self-diffusivity tensor via
the Einstein relation.13, 14

When all rate constants ki→j are small, KMC will take large strides Δt on the time
axis. Thus, times on the order of milliseconds, seconds, or even hours can be accessed,
which are prohibitive for “brute force” MD.

5 Analytical Solution of the Master Equation

When the rate constants ki→j are very broadly distributed, KMC simulation may become
inefficient. This is because time steps Δt must be short enough to track the fastest pro-
cesses occurring in the system. With such a short Δt, processes whose rate constants are
several orders of magnitude lower than those of the fastest processes can hardly be sam-
pled. Thus, one is faced with the same long-time problem as in MD.

In such cases of great dynamical heterogeneity, it may be better to resort to a direct
solution of the master equation, Eq. (1), for the time-dependent state probabilities {P i(t)},
under prescribed initial conditions {Pi(0)}. Remarkably, this solution can be developed
analytically, as discussed in Wei and Prater’s classic work on the kinetics of a network of
reversible chemical reactions,8 and as detailed in recent work by Buchete and Hummer 40

and by Boulougouris.41 We briefly outline this mathematical development here.
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We start from the master equation in its matrix form, as written in Eq. (1). We trans-
form the state probability vector P(t) into a reduced state probability vector P̃(t) with
elements

P̃i(t) = Pi(t)/
√
Pi(∞) (25)

P̃(t) satisfies the reduced master equation

∂P̃(t)

∂t
= K̃P̃(t) (26)

with K̃ij = Kij

√
Pj(∞)/

√
Pi(∞). The matrix K̃ is symmetric by virtue of the mi-

croscopic reversibility condition, Eq. (2). One can readily show that K̃ has the same
eigenvalues as K. These eigenvalues are real, since K̃ is symmetric. Of these eigenvalues,
one (corresponding to the establishment of the equilibrium distribution among states) is
zero, and the remaining are negative. This is because K̃ is a negative semidefinite matrix.
The latter statement can be proved as follows: Let y be an arbitrary n− dimensional vector
of real elements. Then,

yT · K̃ · y =
n∑

i=1

n∑
j=1

K̃ijyiyj =
n∑

i=1

K̃iiy
2
i +

n∑
i=1

n∑
j=1
j �=i

K̃ijyiyj =

n∑
i=1

⎛
⎝−

n∑
j=1
j �=i

ki→j

⎞
⎠ y2i +

n∑
i=1

n∑
j=1
j �=i

kj→i

(
P eq
j

P eq
i

)1/2

yiyj =

−
n∑

i=1

n∑
j=1
j �=i

ki→jy
2
i +

n∑
i=1

n∑
j=1
j �=i

ki→j

(
P eq
i

P eq
j

)1/2

yiyj =

− 1
2

n∑
i=1

n∑
j=1
j �=i

ki→jP
eq
i

[
yi

(P eq
j )1/2

− yj
(P eq

i )1/2

]2
≤ 0 (27)

Eq. (27) establishes K̃ as a negative semidefinite matrix. The proof seems to have
been given for the first time by Shuler.42 Now, if λ is one of the real eigenvalues of K̃ with
corresponding real eigenvector ũ, then K̃ · ũ = λũ and therefore ũT · K̃ · ũ = λ|ũ|2.
Because K̃ is negative semidefinite, the left-hand side of the latter equation is negative or
zero, hence λ ≤ 0.

Let us denote the eigenvalues of K̃ by λ0 = 0 ≥ λ1 ≥ . . . ≥ λn−1. We symbolize by
ũm = (ũ1,m, ũ2,m, . . . , ũi,m, . . . ũn,m) the eigenvenctor of K̃ corresponding to eigenvalue
λm, 0 ≤ m ≤ n − 1. The eigenvector ũ0 has elements ũi,0 = P̃i(∞) =

√
Pi(∞),

corresponding to the equilibrium distribution among states. The Euclidean norm of ũ0 is
unity by the normalization of Pi(∞).

The solution to the reduced master equation can be written as:

P̃(t) =

n−1∑
m=0

[
ũm · P̃(0)

]
exp(λmt)ũm = P̃(∞)+

n−1∑
m=1

[
ũm · P̃(0)

]
exp(λmt)ũm (28)

where the normalization condition
n∑

j=1

Pj(0) = 1 has been used in separating out the
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equilibrium contribution (λ0 = 0). The eigenvectors ũm form an orthonormal basis set:

ũm · ũl = δml, 0 ≤ m, l ≤ n− 1 (29)

They also satisfy
n−1∑
m=0

ũi,mũj,m = δij . Once P̃(t) has been determined, the state probabil-

ities P(t) can be calculated via Pi(t) = P̃i(t)
√

Pi(∞).
Eq. (28) has an interesting geometric interpretation, which is discussed at length by

Boulougouris in the context of a general formulation for analytical solution of the master
equation and calculation of time-dependent averages and autocorrelation functions which
was dubbed “EROPHILE,” for “Eigenvalue Representation of Observables and Probabil-
ities in a HIgh-Dimensional Euclidean space.”41 In the n-dimensional Euclidean space
spanned by the reduced state probabilities P̃i, the point P̃(t) moves in a hyperplane that is

normal to the eigenvector ũ0 =
(√

P1(∞),
√
P2(∞), . . . ,

√
Pn(∞)

)
and contains point

P̃(0). This plane is, of course, spanned by the remaining eigenvectors ũ1, ũ2, . . . , ũn−1.
It intersects each of the P̃i axes at 1/

√
Pi(∞). As time goes by, P̃(t) traces a curved

trajectory on this hyperplane from P̃(0) to the equilibrium distribution P̃(∞).
Let us consider any observable, A, which has well-defined values A i within each of

the states i. The (nonequilibrium) ensemble average 〈A(t)〉 at any time t is

〈A(t)〉 =
n∑

i=1

Pi(t)Ai = 〈A(∞)〉 +
n−1∑
m=1

amβm exp (λmt) (30)

where

am = ũm · P̃(0) (31)

and

βm = ũm · Ã (32)

In Eq. (32), Ã is an n-dimensional vector with elements Ãi = Ai

√
Pi(∞), formed from

the values Ai of the observable in each state and the equilibrium probabilities P i(∞) of
the states.

Eq. (30) expresses the time-dependent ensemble average of the observable, 〈A(t)〉, as
a sum of its value 〈A(∞)〉 when equilibrium among all n states has been established, plus
a sum of exponentially decaying functions. The sum is taken over all relaxation modes,
with characteristic time constants −1/λ1 ≥ −1/λ2 ≥ . . . ≥ −1/λn−1.

In the space spanned by P̃i, considered above, one can draw the vector Ã with com-
ponents Ãi = Ai

√
Pi(∞) along each P̃i axis. The equilibrium average 〈A(∞)〉 is in-

terpreted geometrically as the projection of this vector on the eigenvector ũ0 = P̃(∞).
The time-dependent average 〈A(t)〉, on the other hand, is interpreted as a projection of
the same vector on the reduced probability vector P̃(t). As the tip of P̃(t) moves from
P̃(0) toward the equilibrium point P̃(∞), 〈A(t)〉 moves to 〈A(∞)〉. The exponentially
decaying components of 〈A〉 along the modes are proportional to the projections βm of Ã
on the eigenvectors.41
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One can readily express time autocorrelation functions for observables using the ana-
lytical solution to the reduced master equation. For any observable A defined in the states,

〈A(0)A(t)〉 − 〈A(0)〉 〈A(∞)〉 =
n−1∑
m=1

β2
m exp (λmt) + 〈A(∞)〉

n−1∑
m=1

amβm exp (λmt) +

n−1∑
m=1

βm exp (λmt)
n−1∑
l=1

βl

n−1∑
k=1

n∑
i=1

[
akũi,lũi,mũi,k

P̃i(∞)

]
(33)

In the special case where the system is initially distributed among states according
to equilibrium, P̃(0) = P̃(∞), by virtue of the orthonormality of eigenvectors we have
am = 0,m = 1, 2, . . . , n− 1 and Eq. (33) simplifies to

〈A(0)A(t)〉 − 〈A(∞)〉2 =

n−1∑
m=1

β2
m exp (λmt) (34)

In this special case,
〈
(δA)

2
〉1/2

=
[
〈A(0)A(t)〉 − 〈A(∞)〉2

]1/2
can be interpreted ge-

ometrically as the length of the projection of vector Ã on the on the n − 1-dimensional
hyperplane on which P̃(t) moves.41

Implementation of this analytical solution scheme requires that the equilibrium state
probabilities Pi(∞) be found at the beginning of the calculation. An easy strategy for
accomplishing this without diagonalizing matrix K is to use the iterative successive sub-
stitution scheme:43

P
(l+1)
i (t) =

∑
j �=i

P
(l)
j (t)kj→i∑

j �=i

ki→j
(35)

Implementation of Eq. (28) requires diagonalization of the singular symmetric n × n
matrix K̃.

For spatially periodic systems, in which the set of states is obtainable by replication of a
“unit cell” of states in one, two, or three dimensions, Kolokathis 44 has developed a method
for calculating the eigenvalues and eigenvectors of the reduced rate constant matrix of the
whole system by diagonalizing matrices of dimension corresponding to a single unit cell.
This Master Equation Solution by Recursive Reduction of Dimensionality (MESoRReD)
in diagonalizing the rate constant matrix method greatly reduces the computational effort
required for diagonalization and is valuable in addressing problems of diffusion in crys-
talline solids.

6 Example: Diffusion of Xenon in Silicalite

Zeolites are crystalline aluminosilicates whose crystal structure is characterized by the
presence of regular cavities and pores of diameter commensurate with the sizes of common
gas or solvent molecules. This structure imparts to zeolites a unique ability to distinguish
among molecules sorbed in their pores in terms of their size, shape, and charge distribution
and forms the basis for a large number of technological applications of zeolites as industrial
separation media, catalysts, and ion exchange agents.
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Diffusivities in zeolites are commonly computed via MD simulations. In many systems
of practical relevance, however, diffusion is too slow to be computed reliably by MD.
For example, as can be seen in Figure 4, benzene experiences a tight fit in the pores of
silicalite-1, such that moving from an intersection region to the interior of a straight channel
requires overcoming a free energy barrier of approximately 27 kJ/mol. A MD simulation
of benzene sorbed at low occupancy in silicalite at room temperature would exhaust itself
tracking local motions of the benzene within a sorption site and would hardly sample any
jumps into other sorption sites, which contribute to translational diffusion. A reasonable
prediction of the diffusivity can only be obtained through computation of rate constants for
jumping from site to site via infrequent event analysis and solution of the master equation
in the network of sorption sites (states).14, 23

A simple sorbate/zeolite system on which infrequent event-based calculations appear to
have been conducted for the first time is xenon (Xe) in silicalite-1 at low temperatures and
occupancies. Here we review briefly some calculations on this system at 150 K, coming
from the early work of June et al.13 and the very recent work of Kolokathis. 44 The unit cell
of silicalite has the chemical constitution Si96O192. Calculations were conducted with its
orthorhombic form, which has lattice parameters a = 20.07 Å, b = 19.92 Å, c = 13.42
Å along the x, y, and z directions, respectively. The zeolite possesses two intersecting
systems of channels, both of diameter around 5.5 Å: Straight channels, which run along
the b crystallographic axis, and sinusoidal, or zig-zag, channels, which run along the a
crystallographic axis. The channel systems come together at intersections, which are more
spatious (diameter around 9 Å).

In the modeling work of June et al.,45, 13 silicalite was considered as rigid and its inter-
action with Xe was described as a sum of Lennard-Jones potentials between each oxygen
in its framework and the Xe molecule. An efficient potential pretabulation and interpola-
tion scheme in three dimensions was developed for this potential in simulations. 45 June et
al.13 conducted a thorough analysis of the potential energy hypersurface experienced by
Xe in silicalite as a function of its three translational degrees of freedom, identified states
and transitions between them, and computed rate constants k i→j using Transition State
Theory (TST) with or without dynamical corrections. This analysis led to the identifica-
tion of 12 states per unit cell for Xe in silicalite at very low loadings. There are four states
per unit cell in the interior of straight channel segments (S), four states per unit cell in the
interior of zig-zag channel segments (Z) and four states per unit cell in intersections (I).
Of these, Z and S states are more favorable, while I, where the dispersive attraction of Xe
with the surrounding zeolite lattice is weaker, is less favorable. At 150 K the equilibrium
probabilities of occupancy of these states, normalized within one fourth of the unit cell, are
P eq
Z = 0.572, P eq

S = 0.414, P eq
I = 0.014. The spatial arrangement of these states within

one unit cell of silicalite is shown in Figure 5.
There is a rich connectivity among the states for Xe in silicalite. Apart from I to S and

I to Z transitions, June et al.13 identified direct transitions between S and Z states which
circumvent the intersection regions. There are eleven distinct types of transitions. These
types and their associated rate constants, as calculated by Transition State Theory without
dynamical corrections [Eq. (18)], are shown in Table 1.

Figure 6 provides a pictorial depiction of the spatial arrangement of sorption states 1-
12 in a central unit cell (outlined with green borders) and of the periodic images of these
states located to the right (R) and left (L) of the central unit cell. States 1-4 are I states;
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Figure 5. Schematic outline of the pore structure of a unit cell of silicalite. Spheres represent the three types of
sorption states (Z = sinusoidal channel state, S = straight channel state, and I = intersection state) on the zeolite-
sorbate potential hypersurface. The thick lines provide a rough depiction of the axes of straight and sinusoidal
(zig-zag) channels.

states 5-8 are S states; and states 9-12 are Z states. Figure 6 also shows the network of
transitions as a set of straight line segments connecting the states. Each I, S, and Z state is
connected to another 4, 6, and 8 states, respectively. Thus, there are 72 transition pathways
going in and out of a unit cell. These transitions are summarized in the third column of
Table 1; to each of these transitions a rate and a type are assigned in the first two columns
of the same table.

Table 2 shows estimates of the diffusivities Dxx, Dyy, Dzz , as well as of the orien-
tationally averaged diffusivity D = (Dxx + Dyy + Dzz)/3 at 150 K, obtained from the
states, connectivity, and rate constant information of Figures 5, 6 and Table 1. No distinc-
tion is made between self- and transport diffusivities, as the two are equal at the very low
occupancies considered here. Diffusivities have been calculated by three methods:

• Kinetic Monte Carlo simulation: Here one deploys a large number (e.g. 4000) of
noninteracting Xe molecules (“walkers”) among the states of a large (e.g. 10×10×10
unit cells) network with periodic boundary conditions, according to the equilibrium
occupancy probabilities of the states. One then generates a long (e.g., at least 27000
steps, corresponding to roughly 18 ns for the Xe/silicalite-1 system) KMC trajectory
by the procedure discussed in Section 4. The diffusivity is calculated via the Einstein
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Type of Rate constant ki→j Transitions
Transition (s−1)

I → S 1.309× 1011 1 → 5, 1 → 6, 2 → 5, 2 → 6,
3 → 7, 3 → 8, 4 → 7, 4 → 8

S → I 4.444× 109 5 → 1, 5 → 2, 6 → 1, 6 → 2,
7 → 3, 7 → 4, 8 → 3, 8 → 4

I →
a

Z 2.958× 1010 1 → 9, 2 → 12, 3→
L
10, 4 → 11

Z →
a

I 7.241× 108 9 → 1, 10→
R
3, 11 → 4, 12 → 2

I →
b

Z 1.501× 1010 1 → 10, 2 → 11, 3 → 9, 4→
L
12

Z →
b

I 3.673× 108 9 → 3, 10 → 1, 11 → 2, 12→
R
4

S →
a

Z 3.974× 108 5 → 9, 6 → 9, 7→
L
10, 8→

L
10,

7 → 11, 8 → 11, 5 → 12, 6 → 12

Z →
a

S 2.853× 108 9 → 5, 9 → 6, 10→
R
7, 10→

R
8,

11 → 7, 11 → 8, 12 → 5, 12 → 6

S →
b

Z 8.567× 108 5 → 10, 5 → 11, 6 → 10, 6 → 11,

7 → 9, 7→
L
12, 8 → 9, 8→

L
12

Z →
b

S 6.150× 108 10 → 5, 11 → 5, 10 → 6, 11 → 6,

9 → 7, 12→
R
7, 9 → 8, 12→

R
8

Z → Z 9.737× 108 9 → 10, 9→
L
10, 10 → 9, 10→

R
9,

11 → 12, 11→
L
12, 12 → 11, 12→

R
11

Table 1. Rate constants13 for interstate transitions of xenon in silicalite at 150 K as calculated from Transition-
State Theory in tree dimensions, without dynamical corrections. I, S, and Z represent an intersection, straight
channel state and sinusoidal channel state, respectively. The indices under the arrows distinguish between differ-
ent transitions starting at the same origin state and ending at different images of the destination state
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Figure 6. Transitions of Xe in silicalite-1, depicted as straight lines in three-dimensional space. Red color shows
S (straight-channel) states, yellow color shows Z (zig-zag channel) states and pink color shows I (intersection)
states. Green box defines the borders of one unit cell. Orange color shows the borders of cells along the x axis.

relation, e.g.

Dxx = lim
t→∞

〈
[x(t) − x(0)]2

〉
2t

(36)

and similarly for y and z. Table 2 presents KMC results from both the original work
of June et al.13 and the very recent calculations of Kolokathis. 44 The two sets of KMC
are indistinguishable, within simulation error.

• Numerical solution of the master equation. Here, the master equation, Eq. (1), was
solved numerically as an initial value problem with the Euler method to determine the
state occupancy probabilities as functions of time. The calculation was performed on
a system of 50 × 50 × 50 unit cells with periodic boundary conditions. Initially, a
probability of 1 was assigned to an S state at the center of the system, all other states
being empty. The integration time step in the Euler method was 10−12 s. State proba-
bilities from the numerical solution were summed at the level of unit cells and divided
by the unit cell volume to obtain the probability density ρ cell(x, y, z, t). The marginal
probability densities along the three directions, ρcell,x(x, t), ρcell,y(y, t), ρcell,z(z, t)
were then calculated. The diffusivities Dxx, Dyy, Dzz were obtained by matching
these time-dependent probability densities to the solution of the corresponding con-
tinuum diffusion problem. For the maximum time used in the Euler integration, 10
ns, this is indistinguishable from the Gaussian

ρcell,x(x, t) =
1√

4πDxxt
exp

[
− (x− x0)

2

4Dxxt

]
(37)

and similarly for y and z.

• Analytical solution of the master equation. Model systems consisting of 2 7 = 128
adjacent unit cells arranged in a linear array along the x, y, or z directions, with
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periodic boundary conditions at the ends, were considered. The symmetrized rate
constant matrix K̃27 for each of these systems was formed and diagonalized. Ini-
tially, all probability was distributed in the central two unit cells of the array. The
time-dependent probability of occupancy of all states in the system was calculated as
a sum of exponentially decaying functions of time using the eigenvectors and eigen-
values of matrix K̃27 , according to Eqs. (25) and (28). To avoid the time- consuming
diagonalization of the 1536 × 1536-dimensional matrix K̃27 , a recursive reduction
scheme was devised,44 which ultimately expresses the eigenvalues and eigenvectors
of K̃27 in terms of the eigenvalues and eigenvectors of the symmetrized rate constant
matrix for a single unit cell, K̃1 and other 12×12 matrices that can be formed readily
from the set of rate constants. This MESoRReD scheme44 affords great savings in
CPU time. The calculation of diffusivities from the time-dependent state probability
profiles is again accomplished by fitting the solution to the corresponding continuum
diffusion equation to the master equation results.

Method Dxx (m2s−1) Dyy (m2s−1) Dzz (m2s−1) D (m2s−1)

June et al.
MD13 4.3× 10−10 1.0× 10−9 0.99× 10−10 5.1× 10−10

June et al.
KMC-DC TST13 5.1× 10−10 7.3× 10−10 0.83× 10−10 4.41× 10−10

June et al.
KMC-TST13 1× 10−9 1.2× 10−9 1.7× 10−10 7.9× 10−10

KMC-TST44 9.75× 10−10 1.21× 10−9 1.71× 10−10 7.85× 10−10

Euler Method
TST44 9.70× 10−10 1.25× 10−9 1.83× 10−10 8.01× 10−10

Master Eq. Soln. by
Recursive Reduction 9.71× 10−10 1.17× 10−9 1.75× 10−10 7.71× 10−10

of Dimensionality44

PFG-NMR53,54 - - - 1.633× 10−10

Table 2. Diffusion coefficients for xenon in silicalite-1 at 150 K as computed by different methods and as mea-
sured experimentally

As seen in Table 2, estimates ofDxx, Dyy , Dzz andD obtained by different TST-based
methods are within 3% of each other. Estimates based on rate constants computed via dy-
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Method CPU time (s) Memory (MB)

June et al. MD13 309173.00

Euler method44 23760.00 401

KMC44 6183.46 6

Master Eq. Soln. by
Recursive Reduction 2.96 42
of dimensionality44

Table 3. CPU time and memory (RAM) requirements for calculating the diffusivity of Xe in silicalite-1 at 150
K with a relative error of 3% by various methods. All times except that for MD were measured44 on an Intel
Celeron CPU E200 system with 1.99 GB RAM, running at 2.40 GHz. The time for MD is an estimate, based
on the work of June et al.13 The CPU time required for the method of analytical solution of the master equation
by recursive reduction of dimensionality of the rate constant matrix is partitioned as follows: (a) Determination
of the time-dependent state probabilities 0.27 s; (b) Determination of diffusivity by fitting the profile of state
probabilities with the solution to the continuum diffusion equation 2.69 s.

namically corrected TST, i.e., using Eqs. (12), (13) and (15), obtained by June et al. 13

are also included in the Table, for comparison. Consideration of dynamical corrections
gives lower rate constants for interstate transitions (mainly due to recrossings of the divid-
ing surfaces) and therefore lower diffusivities. Estimates from the dynamically corrected
TST are very close to those obtained by direct MD simulation, which can be considered
as the “exact results” for the force field employed. In table 2 is also shown the single
experimental value of the orientationally averaged self-diffusivity D available for Xe in
silicalite-1 at 150 K via pulsed field gradient nuclear magnetic resonance (PFG-NMR) ex-
periments using 129Xe. The experimental value is of the same order as, but considerably
lower than, the best simulation estimates from MD and DC-TST. This is partly due to the
fact that the intracrystalline occupancy was finite in the experiments, rather than tending
to zero, as considered in the simulations. Imperfections in the zeolite crystals employed
in the experiment and in the force field employed in the simulations and the fact that the
high-temperature, orthorhombic form of the crystal was used in the simulations at 150 K
no doubt contribute to the difference between experimental and predicted values.

The computational requirements of MD and of the TST-based methods for computing
the diffusivity of Xe in silicalite-1 to the same level of accuracy are compared in Table 3.
Clearly, analytical solution of the master equation for a periodic model system, based on
recursive reduction of the rate constant matrix, is the most efficient among the methods
examined; its CPU time requirement is smaller than that of MD, numerical solution of
the master equation by the Euler method, and Kinetic Monte Carlo by factors of 100000,
8000, and 2100, respectively. The widely practiced KMC comes next. For penetrants
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experiencing a close fit in zeolite pores, such as benzene in silicalite, MD is incapable of
tracking diffusional progress and infrequent event-based methods remain as the only viable
alternative.14, 23

7 Example: Diffusion of CO2 in Poly(amide imide)

Knowing the diffusion coefficient of small (gas, solvent) molecules in glassy polymers is
of great importance to the design of packaging materials with controlled barrier properties,
as well as of separation membranes with tailored permeability and selectivity. 19 While the
problem of diffusion in molten and rubbery polymer matrices at temperatures sufficiently
above the glass temperature Tg can be addressed successfully via MD simulation, diffusion
in polymer glasses is too slow to be predictable by direct MD. The self-diffusivities of gases
dissolved at low concentration in glassy polymers are typically on the order of 10−12m2/s
and would require simulation times longer than μs in order to be predicted by MD from

the mean square displacement
〈
[r(t)− r(0)]

2
〉

via the Einstein relation:

Ds = lim
t→∞

〈
[r(t)− r(0)]

2
〉

6t
(38)

The presence of an “anomalous diffusion” regime at short times, where
〈
[r(t)− r(0)]

2
〉

rises sublinearly with time (see below) makes the reliable calculation of D s even more
demanding.

MD simulations have established that the diffusion of a small molecule in a glassy
polymer takes place as a sequence of infrequent jumps between accessible volume clusters
within the polymer. Thus, the problem of calculating the self-diffusivity in an amorphous
glassy polymer is similar to that in a zeolite, with the following important differences:
(a) Simulating the structure of the amorphous polymer is a challenge in itself, which has
stimulated significant methodological development. Currently, a satisfactory strategy for
generating glassy polymer configurations is to coarse-grain an atomistic model into one
involving fewer degrees of freedom, equilibrate the coarse-grained model at all length
scales using connectivity-altering Monte Carlo algorithms, reverse-map back to the atom-
istic level to obtain well-equilibrated melt configurations, and finally quench to the glassy
state.55 (b) infrequent-event analyses of elementary jumps only in the penetrant degrees of
freedom, assuming an inflexible polymer matrix, are of very limited utility; the motion of
polymer degrees of freedom in the course of a diffusive jump must be taken into account in
calculating rate constants for the elementary diffusive jumps in order to obtain a realistic
estimate of Ds.

The first serious calculation of diffusivities in an amorphous polymer matrix based on
TST concepts was performed by Gusev and Suter. 56 This calculation is based on the idea
that atoms of the polymer matrix execute harmonic vibrations around their equilibrium
positions in the minimum energy configuration of the penetrant-free polymer. For a spher-
ical penetrant, this leads to a three-dimensional free energy field that can be expressed in
terms of additive contributions depending on the distances of the center of the penetrant
from the equilibrium positions of the polymer atoms. All (three-dimensional) states and
(two-dimensional) dividing surfaces for translational motion of the penetrant in the poly-
mer matrix are determined via steepest descent constructions in this free energy function,
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in a similar way as in rigid zeolite models (compare Sections 2 and 6) and transition rate
constants for all elementary jumps were determined via Eq. (18) with f = 3 and the free
energy field including vibrational contributions from polymer atoms playing the role of
V(x). The amplitude of polymer atom vibrations,Δ, is usually treated as an adjustable pa-
rameter. A self-consistent method has been proposed for its determination from short-time
MD simulations of the polymer matrix.57 This is a useful and computationally efficient
approach if the penetrant is small enough to justify the assumption of harmonic (“elastic”)
motion of matrix atoms.

Greenfield15, 58, 59 developed a multidimensional TST approach for diffusion in a glassy
polymer, where polymer degrees of freedom are taken into account explicitly in the reac-
tion coordinate of the infrequent events whereby diffusion takes place. For the identifica-
tion of states and dividing surfaces, Greenfield introduced a method based on geometric
analysis of accessible volume within penetrant-free minimum energy configurations of the
glassy polymer, which has been outlined briefly in section 2. This calculation goes from
geometrically identified “necks” between accessible volume clusters to saddle points in
the multidimensional configuration space of the penetrant plus polymer system, to transi-
tion paths in that configuration space. Each transition path connects two basins (regions
around local minima) i and j in multidimensional configuration space, with the center of
mass of the penetrant residing in one cluster of accessible volume in basin i and in another
cluster of accessible volume in basin j. The rate constant k i→j for the jump between i
and j is calculated in the harmonic approximation via Eqs. (19 - 23) with the stress set to
zero and volume changes neglected. In general, there are many basins corresponding to
the penetrant residing in the same cluster of accessible volume as in basin i; these basins
communicate with each other via facile transitions and are envisioned as constituting a
“macrostate” or “metabasin” I . Similarly, basin j belongs to a larger “metabasin” J . The
rate constant for transition between metabasins I and J is estimated as

kI→J =
∑
i∈I

∑
j∈J

ki→j
Pi(∞)

PI(∞)
(39)

The ratio Pi(∞)/PI(∞) is estimated from a short MD simulation of the polymer plus
penetrant system with the penetrant confined in the accessible volume of metabasin I; it is
the ratio of time spent in basin i to that spent in the entire metabasin I . The rate constants
kI→J constitute a rate constant matrix K providing a stochastic description of the motion
of the penetrant at the level of metabasins, or clusters of accessible volume. They may
have to be adjusted to ensure that microscopic reversibility, Eq. (2), is satisfied.

Vergadou60 extended and applied Greenfield’s method to study permeation of CO 2

in a glassy poly(amide imide) of complex repeat unit constitution [-NH-C 6H4-C(CF3)2-
C6H4-NH-CO-C6H4(CH3)-N(CO)2C6H3-CO-]n. All multidimensional TST calculations
were performed in atomic Cartesian coordinates. The distribution of rate constants for
elementary jumps ki→j was found to be very broad, covering the range 10−14 to 10−1

s−1, and skewed towards low values, the most probable value being around 10 −6 s−1. The
distribution of elementary jump lengths of the penetrant, on the other hand, was found to
be relatively narrow, covering the range 2 to 10 Å, with a most probable value around 4 Å.
Figure 7 displays three characteristic snapshots in the course of an elementary jump of a
CO2 molecule. The initial and final configurations constitute local minima of the potential
energy of the polymer plus penetrant system, while the middle configuration (transition
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Figure 7. (a) Snapshots along the transition path of an elementary jump of a CO2 molecule within an amorphous
poly(amide imide) (PAI) matrix. The configurations on the left and right correspond to local minima of the
potential energy of the CO2 + PAI with respect to all atomic coordinates. The configuration in the middle
corresponds to a saddle point of the potential energy. (b) Visualization of the accessible volume of the polymer,
as determined using a spherical probe of radius 1.3Å in the same three snapshots along the transition path. The
CO2 penetrant is also shown. In the saddle point configuration, polymer degrees of freedom have moved in such
a way as to form a “neck” connecting the accessible volume clusters in the initial and final states. The orientation
of the CO2 at the saddle point is more or less parallel to this neck of accessible volume.

state) is a saddle point of the potential energy function. Molecular configurations are shown
in part a of the figure, while part b displays the accessible volume distribution at these three
characteristic points along the transition path of the elementary jump. Clearly, in the initial
and final states the CO2 molecule lies in the interior of accessible volume clusters formed
among the atoms of the glassy polymer. In the transition state a “neck” of accessible
volume has developed which momentarily connects the origin and destination clusters,
letting the penetrant go through. At the transition state the penetrant is oriented roughly
parallel to this neck. Evidently, the degrees of freedom of the polymer and the orientational
degrees of freedom of the penetrant play a significant role in shaping the transition path
and hence the rate constant of the elementary jump.

After calculating all relevant rate constants kI→J by multidimensional TST, the diffu-
sive progress of CO2 in the PAI matrix was tracked via Kinetic Monte Carlo simulation,
applying periodic boundary conditions at the simulation cell boundaries (see Section 4).

Figure 8 displays the mean square displacement
〈
[r(t) − r(0)]2

〉
from KMC trajectories

as a function of elapsed time in log-log (left) and linear (right) coordinates. A strongly

anomalous regime (
〈
[r(t) − r(0)]

2
〉
∝ tn with n < 1) is observed at short times. Beyond

1 μs, however, where the root mean square displacement exceeds the dimension L of the
periodic simulation box, the dependence becomes linear, allowing one to extract the self-
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diffusion coefficient as one sixth the slope of the right-hand side plot, in linear coordinates
[compare Eq. (38)].

The presence of an anomalous regime at short times has by now been well established
from simulations of transport in amorphous polymers. Anomalous diffusion is due to long-
lived structural correlations in the polymer, which cause the diffusant to encounter a locally
heterogeneous environment. From a practical point of view, anomalous diffusion increases
the computational cost of simulations required for the prediction of D s, since such simu-
lations must be long enough for the Einstein (exponent n = 1) regime to be adequately
sampled. In glassy polymer matrices, the crossover from anomalous to normal diffusion
is often observed at root mean squared penetrant displacements roughly equal to the sim-
ulation box size. This is a system size effect. At length scales larger than the simulation
box size, the model matrix looks like a regular lattice to the penetrant; structural hetero-
geneities leading to anomalous diffusion are suppressed, precipitating a premature onset of
the Einstein regime. Based on the work of Karayiannis, 61 despite this premature onset, the
estimate of Ds extracted from the linear part of the mean square displacement versus time
curves is not significantly affected by system size, provided the model structures employed
in the simulation are large enough and numerous enough. Karayiannis 61 has conducted
a systematic KMC study and Effective Medium Theory analysis of the relation between
the duration of the anomalous diffusion regime and the heterogeneity in the distribution of
elementary jump rate constants.

Based on Figure 8, the duration of the anomalous regime for diffusion of CO 2 in PAI
is at least 1 μs. State-of-the-art measurements of CO2 diffusion in glassy polymers with
carbon-13 Pulsed Field Gradient NMR indicate that it may take 10 ms for motion of the
penetrant to become fully isotropic and the Einstein regime to be reached. 62

From the slope of the Einstein regime of Figure 8 we extract a diffusivity value for
the diffusion of CO2 in PAI at low concentration equal to Ds = 0.25 × 10−12m2s−1.
An experimental estimate is63 Ds = 0.81 × 10−12m2s−1. The solubility coefficient of
CO2 in the PAI, estimated by the Widom test particle insertion method31 based on the
same atomistic model, is S = 0.42 cm3(STP)/(cm3 polymer cmHg). The permeability
P = D.S of CO2 through the PAI is thus estimated as P = 10.5 cm3(STP) cm/(cm2 s
cmHg) ×10−10, or 10.5 barrer. This compares with experimental estimates of P = 9.54
barrer63 and P = 15.01 barrer64 from the literature. The comparison between predicted
and experimental values is quite favorable, given the uncertainties in the force field em-
ployed, in the structure of the model polymer, but also in the measured permeabilities.

8 Dynamic Integration of a Markovian Web and its Application to
Structural Relaxation in Glasses

Glassy materials play an important role in our life and have therefore constituted an ob-
ject of extensive research, both at basic and applied levels. Glasses are nonequilibrium
materials, their properties depending on their formation history. Furthermore, their proper-
ties change very slowly with time in the course of “physical ageing,” whose characteristic
times exceed common macroscopic observation times below the glass temperature T g. The
study of glassy materials by means of molecular simulation faces serious challenges, be-
cause one needs to bridge time scales spanning some 20 orders of magnitude, from the

29



Figure 8. Mean square displacement of CO2 penetrant in a glassy poly(amide imide) matrix as a function of
time from kinetic Monte Carlo simulations of Vergadou60 based on atomistically calculated sorption states and
jump rate constants between them. (a, left): log-log coordinates; (b, right): Linear coordinates. The straight line
marked n = 1 on the left-hand side plot indicates the expected slope for diffusion [Einstein equation, Eq. (38)].
The dotted lines labelled L2 mark the edge length of the primary simulation cell, on which periodic boundary
conditions are applied. The self- diffusivity Ds is computed from the slope of the right-hand side plot.

period of fast atomic vibrations (10−14 s) up to the longest time for structural, volume, and
enthalpy relaxation (on the order of years 20 ◦ C or so below Tg).

State-of-the-art theories of the supercooled liquid state include mode coupling theory 46

and theories for enumerating stationary points47 on the multidimensional energy hypersur-
face of the system. Analyses of the potential energy landscape have been reviewed. 48

“Fragile” glass-forming liquids, whose viscosity exhibits a strongly non-Arrhenius de-
pendence on temperature, are characterized by very rugged potential energy landscapes.
This is seen characteristically in the “disconnectivity graphs” computed by D. Wales and
collaborators49 (see Figure 9). All branches of the inverted tree in a disconnectivity graph
terminate at a local minimum of the energy (inherent structure). Relative energies can be
read off on the vertical axis. The node (branch point) through which two inherent struc-
tures communicate corresponds to the lowest lying first-order saddle point between these
structures. From the “willow tree” appearance of the graph, it is clear that there are sets of
basins (“metabasins”) communicating through relatively fast transitions, sets of metabasins
communicating through slower transitions etc., i.e., the potential energy landscape exhibits
a hierarchical structure.

The complexity of the energy landscape of a binary Lennard-Jones glass of the same
composition as that studied in Ref. 49 is also seen in Figure 10, taken from the work
of Tsalikis et al.29 Here a system consisting of N = 641 particles is considered, at a
constant number density ρ = 1.1908σ−3

AA. To analyze the dynamics in real time units,
the properties of Argon have been attributed to component A (mA = mB = 6.634 ×
10−26kg, εAA = 1.65678 × 10−21J, σAA = 3.4 × 10−10m). With these assignments,
the glass temperature of the system is Tg = 38.4K . Figure 10 refers to a set of 290
basins that were identified as belonging to a metabasin through MD simulation at 37K. By
“belonging to a metabasin” here we mean that the time required for the system to escape
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Figure 9. Disconnectivity graph for a liquid mixture of 48 A and 12 B type Lennard-Jones particles with εAB =
1.5εAA, εBB = 0.5εAA, σAB = 0.8σAA, σBB = 0.88σAA at a particle number density ρ = 1.3σ−3

AA,
as computed from MD simulations at a temperature of 0.71 εAA/kB. The glass temperature for this system is
approximately Tg = 0.32εAA/kB. The length of the scale bar on the left corresponds to a total system energy
change of 10 εAA.49

from this particular set of basins is significantly longer than the time needed for the system
to establish a restricted equilibrium among the basins in the set. In a plot of the number of
distinct basins visited versus time in the course of a MD simulation, this reflects itself as a
plateau.50 The number of identified distinct transitions between pairs of these 290 basins
is plotted as a function of the rate constant of the transitions in Figure 10. The long-dashed
line shows results from a 3 ns-long NV T MD simulation at 37 K, which was trapped
within the metabasin (trajectories were turned back as soon as they were found to exit
the metabasin); a total of 3910 distinct transitions were observed during this simulation.
The short-dashed line shows results from a swarm of NV E MD trajectories generated in
parallel off of an NV T MD trajectory at 37 K. These were able to provide a more thorough
sampling of transitions within the metabasin; a total of 24271 distinct transitions were
sampled. The solid line comes from a temperature-accelerated MD (TAD) method, which
used as input data from swarms ofNV E MD trajectories generated in parallel off of NV T
MD trajectories conducted at temperatures from 37 K to 55 K. A histogram reweighting
method was invoked to translate all data to 37 K (see section 3 and Ref. 29). This latter
sampling method, which identified a total of 51207 distinct transitions, was able to access
a rich variety of passages between the basins in the metabasin, including passages that go
through high-lying terrain in the rugged potential energy landscape of the system. This
explains the “wing” extending to very low rate constants on the left-hand side of Figure
10. Clearly, the fastest transitions sampled have a rate constant around ν 0 � 1013 s−1.
The “nose” around 1010 s−1 is a consequence of the fact that the studied basins belong to
a metabasin, so they communicate through relatively low-lying passages with each other.
A time of approximately 10−10 s is needed for the system to visit the entire metabasin.
The wing extending to very low rate constants (indeed, too low to be physically relevant
at the reference temperature of 37 K, see inset) tells us something about the topography of
the landscape. The inset of Figure 10 suggests a power-law distribution of rate constants
between basins, of the form:

ρ(ka→b/ν0) � B(ka→b/ν0)
α, α � 0.01 (40)

and hence an exponential distribution of barrier heights E a→b = −kBT ln (ka→b/ν0)
Interestingly, this is similar to the form proposed for the distribution of barrier heights by
J.P. Bouchaud on theoretical grounds.51
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Figure 10. Number of identified distinct transitions between the 290 basins of a metabasin of a Lennard-Jones
mixture at 37 K as a function of the rate constant of the transitions, as computed by three sampling methods (see
text for details). The inset shows the total range of rate constants sampled by the temperature-accelerated method.
The light-colored straight line through the plot in the inset corresponds to Eq. (40).

Tsalikis et al.29 have correlated the rate constants of transitions sampled via their tem-
perature accelerated dynamics/histogram reweighting scheme with the distance traversed
in configuration space, with the cooperativity of the transitions, and with their molecular
mechanisms. Fast intrabasin transitions in the binary Lennard-Jones system tend to in-
volve single “cage-breaking” events, wherein more than half of the first neighbors of an
atom change, or multiple “cage breaking” events occurring at different points in the sys-
tem. Slower interbasin transitions tend to involve coordinated displacements of “chains” of
atoms, wherein each atom jumps to a position close to that previously occupied by another
atom in the chain. Even slower, more cooperative transitions involve extended formation
of several interlinked chains or massively coordinated displacements which look like shear
bands.

How do we track structural relaxation of a glass at temperatures below T g over times
relevant to the applications of glasses as structural, optical, packaging, and membrane ma-
terials? These time scales (milliseconds to years) are too long to be addressed by direct
MD simulation, so reverting to an infrequent event theory-based approach seems appro-
priate. On the other hand, the rugged potential energy landscape of glass-forming systems
gives rise to a very broad distribution of characteristic times for elementary transitions and
a complex connectivity among basins. KMC simulation would have to track the fastest
of these transitions, and this would limit its ability to sample long-time evolution. An ap-
proach based on analytical solution of the master equation, equivalent to averaging over
all dynamical trajectories originating from a given initial distribution among basins, would
seem more promising. However, it is impossible to build a complete map of all basins
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and transitions between them in the rugged potential energy landscape of a glassy system
even of modest size N . A way out of this difficulty is provided by the fact that, when one
studies structural relaxation, one typically starts from an initial distribution among states
that is highly localized (e.g. from a single basin in the potential energy landscape, where
the system was trapped via the glass formation history that was followed to obtain it). The
region of configuration space where the system resides is thus initially very confined, and
expands gradually as transitions between basins take place.

This idea led Boulougouris and Theodorou21 to develop a computational approach for
tracking the temporal evolution of the distribution among basins (or “states”) via infre-
quent transitions, starting off from a highly localized initial distribution, which they called
“Dynamic Integration of a Markovian Web,” or DIMW. DIMW distinguishes states that it
samples into two categories: “explored” and “boundary” states. An “explored” state is a
state for which an exhaustive calculation of as many as possible transition pathways lead-
ing out of it to neighboring states has been undertaken and rate constants associated with
these transitions have been computed. In the application to isothermal - isochoric structural
relaxation of a polymer glass, discussed in Ref. 21, this calculation proceeds by computing
as many as possible saddle points of the potential energy in 3N−3-dimensional configura-
tion space around the state under investigation using the dimer method 22 and subsequently
constructing a transition path through each of these saddle points to neighboring states
via Fukui’s intrinsic reaction coordinate approach. 18. Strict energy- and configuration-
based criteria for identifying states that have already been visited have been implemented
in connection with this exploration process.21 For each transition pathway, a rate con-
stant is computed. In the application presented in Ref. 21, this computation was based
on transition-state theory in the harmonic approximation [compare Eq.(24)]. “Boundary”
states, on the other hand, are states connected to explored states, which, however, have not
been explored themselves. The DIMW algorithm proceeds as follows:

(1) All states populated according to the narrow initial distribution P(0) are fully ex-
plored, as described above, and boundary states connected to these states are iden-
tified. Rate constants are computed for all identified transitions emanating from an
explored state and for their reverse transitions. Bookkeeping of the explored and
boundary states, of the connectivity among them and of associated rate constants, is
initialized. Let E and B symbolize the current set of explored and boundary states,
respectively.

(2) The evolution of the occupancy probabilities of explored and boundary states for times
short enough for the current set of explored states to be adequate is tracked by analyt-
ical solution of the master equation in the current explored and boundary states, initial
occupancy probabilities for the boundary states being zero and all rate constants not
emanating from or terminating in an explored state being taken as zero:

∂Pi

∂t
=
∑
j �=i

Pjkj→i − Pi

∑
j �=i

ki→j , i, j ∈ E ∪B (41)

From the solution to Eq.(41) we compute the total probability of the system residing
in the current set of explored states at time t,

PE(t) =
∑
i∈E

Pi(t). (42)
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We also compute the efflux of probability from the current set of explored states to
each one of the current boundary states,

fj(t) =
∑
i∈E

Pi(t)ki→j , j ∈ B (43)

as well as the total efflux of probability from the current set of explored states to the
current boundary states,

fB(t) =
∑
j∈B

fj(t) (44)

(3) For times commensurate with the first passage time for exit of the system from the
current set of explored states, the latter set will no longer be adequate. Clearly, for
such times the set of explored states must be augmented by including more states. We
select a time tselect for first passage of the system out of the current set of explored

states by sampling the distribution fB(t)/
∞∫
0

fB(t)dt.

(4) We pick one of the boundary states in set B, jselect, according to the discrete probabil-
ities fj(tselect)/fB(tselect). The selected state will be appended to the set of explored
states, E.

(5) We update the set E by including state jselect in it. Furthermore, we proceed to
explore state jselect and update set B by removing state jselect from it and appending
to it all states connected to jselect not already belonging to E ∪B that were identified
through the exploration of jselect. Finally, we identify a time tsafe, beyond which
the updated sets E and B have to be used. This time is calculated via the condition
PE(tsafe) = 1− δ, with PE(t) being the probability of residing in the set of explored
states before the update, computed in step 2. A value of δ = 10−3 was used in the
application presented in Ref. 21.

(6) We check whether time tsafe has exceeded the desired simulation time. If not, we
return to step 2 to solve the master equation analytically with the same initial condi-
tions, but in the augmented set of explored states with the updated set of boundary
states. For t < tsafe, the resulting solution should be practically indistinguishable
from that obtained so far. For t ≥ tsafe, the solution for the augmented set of explored
states should be used.

As described above, DIMW amounts to a series of analytical solutions of the master
equation in a set of explored and boundary states that is progressively augmented “on the
fly,” with rate constants determined from atomistic infrequent event analysis. The pro-
gressive augmentation of the set of explored states has a “self-healing” aspect; important
connections that were missed at shorter times may be discovered as the network of ex-
plored states is expanded. The outcome from performing this calculation out to long times
is a set of analytical expressions for the time-dependent probabilities P i(t) of the explored
states.

Figure 11 displays the result from a DIMW calculation of structural relaxation in a 641
united atom model of glassy atactic polystyrene (aPS) at 250 K, roughly 123 K below the
experimental glass temperature Tg, at a density of 0.951 g/cm3, equal to the orthobaric
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Figure 11. a (left): Helmholtz energy as a function of time for physical ageing of an aPS computer “specimen”
at 250 K and initial pressure 1 bar at constant volume, as determined through the DIMW approach. b (right):
Characteristic rate constants for the modes from diagonalization of the rate constant matrix at 10−5 s (filled
symbols) compared to the peak frequencies of loss modulus measurements on aPS at various temperatures (open
symbols). The quantity f on the abscissa can be identified with −λi in the text.

density at that temperature.21. The calculation was performed out to 10−5 s with modest
computational cost. 240 distinct states were explored and 2880 saddle points were identi-
fied in the course of the calculation. Shown in Figure 11a is a “time-dependent Helmholtz
energy” for the system, calculated as

A(t) =
∑
i

Pi(t)Ai(t) + kBT
∑
i

Pi(t) lnPi(t), i ∈ E (45)

with Pi(t) being the time-dependent probability of occupancy of explored state i from the
DIMW calculation and Ai(t) being the Helmholtz energy of the system confined in state
i, computed according to the harmonic approximation [compare Eqs. (20, 22)]. Note that
A(t) consists of an average of the Helmholtz energies A i(t) of the system confined in each
individual state (basin), each state being weighted by its occupancy probability at time t,
plus a term of entropic origin that has to do with exchange of probability among the states.
At infinite time, when the system would distribute itself according to the Boltzmann dis-
tribution in its entire configuration space, A(t) would become the Helmholtz energy of
equilibrium thermodynamics. For the relaxing glass, which starts off occupying a single
state, A(t) decays with time as the system strives to approach thermodynamic equilibrium.
It is interesting that this decay is not featureless, but exhibits characteristic shoulders and
plateaux over specific time domains. These features betray the existence of specific relax-
ation processes. A plateau in A(t) suggests that the system equilibrates locally within a
“metabasin” of states that communicate easily with each other and is temporarily trapped
there before overcoming the barriers surrounding the metabasin and moving on to states of
lower free energy.

One can readily bring out the characteristic rate constants −λ i of modes contributing
to relaxation by diagonalizing the rate constant matrix at the longest time accessed, 10−5

s. Results from this diagonalization are displayed in figure 11b (compare section 5). In the
same figure are shown Arrhenius plots for subglass relaxation processes in aPS, determined
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Figure 12. a (left): Fast mode (λi = −109.5s−1) contribution to the orientational decorrelation of unit vectors
normal to the plane of each phenyl ring in aPS at 250 K. The index l measured along the axis running from left
to right enumerates different phenyl rings in the system. b (right): Slower mode (λi = −105.2s−1) contribution
to the orientational decorrelation of unit vectors along the stem of each phenyl ring in the same system.

experimentally by dynamic mechanical spectroscopy. 21 One sees that the characteristic
frequencies determined by the DIMW calculation cluster in two frequency ranges, around
105 and around 109 s−1. These values are quite close to the characteristic frequencies of
the so-called γ and δ subglass relaxation processes determined experimentally.

Using the EROPHILE approach (Section 5), one can readily compute time autocorrela-
tion functions for specific vectors in the system and analyze the contribution of each mode
to the decay of these functions [compare Eq. (34)]. Boulougouris and Theodorou 41 have
examined the autocorrelation functions of unit vectors normal to the phenyl planes and of
unit vectors directed along phenyl stems. Two modes were found to contribute significantly
to the decorrelation of these vectors: A fast mode with λ i = −109.5s−1, which can be as-
sociated with the δ subglass relaxation process, and a slower mode with λ i = −105.2s−1,
which can be associated with the γ subglass relaxation process (see also Figure 11). In
Figure 12, the contributions of these modes to the decorrelation of the characteristic vec-
tors of each phenyl group l in the model glassy aPS system are displayed. The fast mode
corresponds to rotation of an isolated, mobile phenyl in the system around its stem. On the
other hand, the slower mode corresponds to a cooperative motion involving changes in ori-
entation of several phenyl stems. As regards this latter motion, one can discern relatively
long sequences of phenyls along the aPS chain that exhibit very little decorrelation. These
sequences tend to be syndiotactic in their stereochemical configuration.

This aPS example shows how mechanictic aspects of dynamics in a system with very
complex potential energy landscape can be explored in an unbiased way using a combina-
tion of DIMW and EROPHILE methodologies.

9 Lumping

A difficulty with DIMW-type approaches (see Section 8) is that the number of states to be
tracked becomes prohibitively large at long times. A way out of this problem is to group,
or “lump,” states communicating via transitions that are fast in relation to the observation
time into single clusters of states. If performed judiciously, this lumping does not result
in loss of essential information. At long observation times, the system distributes itself
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among fast-communicating states according to the requirements of a restricted equilibrium
(compare plateaux in Figure 11a), so clusters of such states behave as single “meta-states,”
for all practical purposes.

From the mathematical point of view, lumping is not a new problem. It has been exam-
ined in the context of networks of chemical reactions in the classic work of Wei and Kuo 52

and in several subsequent works. As shown there, lumping calls for the determination of a
n̂× n transformation matrix M, where n is the number of original states and n̂ < n is the
number of lumped states (or clusters of states). The transformation from the probability
distribution among the original states to that among the lumped states at any time t takes
place according to the equation

P̂(t) = M ·P(t) (46)

The lumping matrix M has the following properties:

i. The elements of matrix M are either “0” or “1”.

ii. Every column of matrix M contains exactly one “1”. The physical meaning behind
this is that every state of the original description (assigned to a column of M) belongs
to one cluster only (assigned to a row of M).

iii. The position of “1” in every column of M (i.e., state in the original description)
describes to which cluster (row of M) the state of the initial system is being lumped.

Once M is known, the n̂ × n̂ rate constant matrix K̂ to be used at the lumped level is
calculated as

K̂ = M ·K ·A ·MT · Â−1 (47)

where A is a n×n diagonal matrix whose diagonal elements equal the elements of the
equilibrium probability vector P(∞) corresponding to the original rate constant matrix K,
the superscripts “T” and “−1” indicate matrix transpose and matrix inverse, respectively,
and

Â = M ·A ·MT (48)

Lempesis et al.43 proposed a methodology for the determination of the number of
lumped states n̂ and the lumping matrix M in such a way that the long-time dynamics of
the original description is reproduced. The strategy is to minimize an objective function of
the form

z(n̂,M) = z1E + z2W + z3n̂ (49)

with z1, z2, z3 being pre-defined real positive constants.
E is the Frobenius norm of the n̂× n error matrix E: 52

E = ||E||F =

√√√√ n̂∑
i=1

n∑
j=1

|Eij |2 (50)
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E = M ·K− K̂ ·M (51)

For exact lumping, the lumping error E would be zero. W , on the other hand, is the
Frobenius norm of the lumped matrix K̂:

W = ||K̂||F =

√√√√ n̂∑
i=1

n̂∑
j=1

|K̂ij |2 (52)

Including a term proportional to W in the objective function, Eq. (49), forces the mini-
mization to focus on long times (small W ) in matching the dynamics between the original
and the lumped system. Including a term proportional to n̂ in the objective function, on the
other hand, encourages the algorithm to keep the dimensionality of the lumped system as
small as possible.

The minimization of the objective function defined in Eq. (49) is performed stochas-
tically, using Monte Carlo moves which change the dimensionality n̂ and the form of the
lumping matrixM, while respecting the constraints on the form of that matrix stated above.
To avoid trapping in local minima of the objective function, a Wang-Landau scheme is in-
voked to determine the density of M-matrix “states” in the space of variables (E,W, n̂)
and pick that M, close to the origin of (E,W, n̂) space, which minimizes the objective
function.43

Figure 13 shows results from application of the lumping strategy of Lempesis et al. 43 to
a mixture of 641 Lennard-Jones particles with the interaction parameters stated in section
8 and atomic fractions 80% A, 20% B, at a temperature of 37 K, just below T g. Shown are
histograms of the negative inverse eigenvalues t i = −1/λi of the rate constant matrices K
(original description) and K̂ (lumped description). The overall shapes of the histograms are
seen to be similar. Furthermore, the eight longest t i values are seen to agree quantitatively
between the original and lumped system, testifying to the success of the lumping method
in reproducing the long-time dynamics of the original system.

10 Summary

Addressing long-time (> 1μs) dynamics in many materials, complex fluid, and biomolec-
ular systems constitutes a great challenge for molecular simulations. In many cases, the
temporal evolution of a system is slow because the system spends a long time confined
within regions in configuration space (“states”) and only infrequently jumps from state to
state by overcoming a (free) energy barrier separating the states. We have briefly discussed
ways of probing the time scale separation underlying these infrequent transitions and iden-
tifying states, either in terms of all the degrees of freedom or in terms of appropriately
chosen slow variables or order parameters. We have also reviewed analytical and simula-
tion techniques, based on the theory of infrequent events, for estimating the rate constants
ki→j for transitions between states.

Emphasis in these notes has been placed on how we predict the long-time dynamical
evolution once we have identified a network of states and computed the rate constants be-
tween them. We have discussed the principles of two categories of methods for doing this:
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Figure 13. Histogram of the negative inverse eigenvalues for (a) the initial description, (b) the lumped description
of the dynamics of a mixture of 641 Lennard-Jones particles just below Tg (see text for details). There are
n = 1502 eigenvalues in (a) and n̂ = 600 eigenvalues in (b).

Kinetic Monte Carlo simulations, which generate long stochastic trajectories for the evolu-
tion of the system; and analytical solution of the master equation, which yields expressions
for the time-dependent probabilities of occupancy of the states as sums of exponentially
decaying functions after diagonalization of an appropriately symmetrized rate constant ma-
trix. We have seen that the analytical solution to the master equation can form the basis for
calculating useful time-dependent ensemble averages and correlation functions that quan-
tify the approach to equilibrium and enable the calculation of time-dependent properties in
the context of the Eigenvalue Representation of Observables and Probabilities in a HIgh-
dimensional Euclidean space41 (EROPHILE) approach. We have presented applications
of both Kinetic Monte Carlo and analytical solution of the master equation to problems of
diffusion in zeolites and in amorphous polymers. We have also discussed advantages of the
analytical solution in cases where the spectrum of characteristic times for evolution on the
network of states, quantified by the eigenvalues of the rate constant matrix, is very broad.
In systems characterized by spatial periodicity, such as zeolites, analytical solution of the
master equation can be made several orders of magnitude faster than Kinetic Monte Carlo,
thanks to a recursive scheme44 (MESoRReD) that reduces diagonalization of the rate con-
stant matrix for the whole system to diagonalization of much smaller matrices pertaining
to a single unit cell.

Nonequilibrium systems with rugged or fractal potential energy hypersurfaces, such
as glasses, preclude the a priori determination of all states and transitions between them.
One is often interested in the evolution of such systems starting from a narrow, localized
distribution in configuration space (e.g., tracking the structural relaxation of a glassy con-
figuration). For addressing this problem, we have introduced Dynamic Integration of a
Markovian Web21 (DIMW), which solves the master equation in a network of states that
is progressively augmented as time elapses based on an ”on the fly” exploration of con-
figuration space and calculation of rate constants. Application of the DIMW approach to
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a polymer glass has yielded promising results. To keep the number of states manageable 

at long times, DIMW can be complemented by a “lumping” algorithm
43

 which groups 

fast-communicating states into single “metastates.” This algorithm has been applied suc-

cessfully to a glassy binary Lennard-Jones mixture. 

It is hoped that the concepts and computational tools discussed here may be useful in 

addressing the long-time properties of systems enountered in the wide range of problems 

addressed by today’s physicists, chemists, chemical engineers, materials scientists, and 

molecular biologists, starting from fundamental atomic-level information. 
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