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GLASSES  ARE  NON-EQUILIBRIUM  MATERIALS 

J. Hadač, P. Slobodian, P. Říha, P. Sáha, R.W. Rychwalski, I. Emri, J. Kubát, 

J. Non-Cryst. Solids, 353, 2681-2691 (2007) 

atactic Polystyrene 

(aPS) 

Mw=145 kg/mol 

Mw/Mw=1.03 

 

LIQUID 

GLASS 

Glass structure and 

properties depend on 

the rate of cooling 

from the melt. 



GLASSES  ARE  NON-EQUILIBRIUM  MATERIALS 

J. Hadač, P. Slobodian, P. Říha, P. Sáha, R.W. Rychwalski, I. Emri, J. Kubát, 

J. Non-Cryst. Solids, 353, 2681-2691 (2007) 

aPS, Mw=145 kg/mol, Mw/Mw=1.03, Tg(1
oC/min)=97.8±0.2oC 

Glass properties change with time (physical ageing) 
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UNITED  ATOM  MODEL  OF  GLASSY  ATACTIC  

POLYSTYRENE 

Starting point:  Well-equilibrated melt configurations 

T. Spyriouni, C. Tzoumanekas, DNT, G. Milano, F. Müller-Plathe, 

Macromolecules, 40, 3876-3885 (2007). 

A.V. Lyulin, J. DeGroot, M. Michels, Macromol. Symp. 191, 167 (2003). 



ENERGY  LANDSCAPE  PICTURE  OF  A  GLASS 

Configuration fluctuating in the neighborhood of local energy minima: 

“Inherent structures” : F. H. Stillinger, Science  267, 1935 (1995).                

See also work by P.G. Debenedetti, D.J. Lacks, A. Heuer, G. Parisi, F 

Sciortino, D. Wales, T. Keyes, T.M. Truskett, DNT and U.W. Suter. 

Transitions between minima inhibited by high energy barriers.  

Glass properties: arithmetic averages of properties of individual “basins 

of attraction”.   Restricted equilibrium established within each basin. 

Ageing: Redistribution in configuration space resulting from infrequent     

transitions between basins. 
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IN-BASIN MOTION: QUASI-HARMONIC  

APPROXIMATION (QHA)  

• Eigenvalue problem 

 

• Normal mode frequencies 

 

• Vibrational free energy 
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• Taylor expansion of the energy around the minimum 

 

• Second derivatives of the potential energy 
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Mass-weighted 

coordinates 

V(xo) =Vinh and i  are functions of 

the spatial extent of the system. 



GIBBS  ENERGY  MINIMIZATION  OF  A  

BASIN  UNDER  GIVEN  STRESS  STATE 

Quench from melt by classical MD 

Vk= Vo,…,Vf 

Gk(T, P, Vk) 

Vibrational free energy 

Inherent structure 
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Gibbs Free Energy
Classical QHA 

T=200 Κ, P =1 Atm
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Atactic polystyrene                                 

modified A.Lyulin et al. (2003) model                

isotropic dilation/contraction 

N.P. Kopsias and DNT, J. Chem. Phys. 109, 8573 (1998).  

D. Tsalikis, G.C. Boulougouris, DNT. 



VOLUMETRIC  BEHAVIOR:  QHA  vs. MD 

Atactic polystyrene,               

modified A.Lyulin* 

model 

Pressure  1 bar 

MD cooling rate 

6.25 K/ns 
 

641 united atoms 
 

Averages over  5 

inherent structures 

 

Exp: P. Zoller, D.J. Walsh (1995). Standard Pressure-Volume-Temperature       

Data for Polymers. Technomic: Lancaster.  

*A.V. Lyulin, J. DeGroot, M. Michels, Macromol. Symp. 191, 167 (2003). 
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ELASTIC  CONSTANTS:  QHA 
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Simulation        

E = 3.9 GPa         

ν = 0.35 

Experiment             

E = 3.2-3.4 GPa    

ν = 0.32 

 

Stress-controlled uniaxial tension-compression experiments:            

Minimization of in-basin Gibbs energy with respect to spatial 

dimensions of the model system. 

Atactic polystyrene,               

modified A.Lyulin 

model 

641 united atoms 

T= 325 K 

Method:  N.P. Kopsias 

and DNT, J Chem. Phys. 

109, 8573 (1998) 



ELEMENTARY  TRANSITIONS  BETWEEN  BASINS 

• First step on either side in the direction of the eigenvector correspon- 

ding to the negative eigenvalue of the Hessian: 

• Subsequent steps in steepest descent direction: 

Through each saddle point, determine reaction path           
“Intrinsic Reaction Coordinate”, K. Fukui  Acc.Chem.Res. 14, 363 (1981). 

   nd dτex

   V  d dτxx

Determine saddle points (1, 2, 3, 4, …) out of current basin A.    
“Dimer method”, G. Henkelmann and H. Jónsson, J. Chem. Phys. 111, 7010 (1999).  

Estimate transition rate constants via Transition State Theory  
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MASTER  EQUATION 

Pi(t):   Probability of being in state i     

  at time t. 
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d
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Need to solve the master equation starting from an initial 

probability distribution among states P(0). 

vector of state 

probabilities 

Transition rate 

constant matrix 
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j
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t→∞ : dP/dt=0,  ki→j Pi(∞)= kj→i Pj(∞) equilibrium state 

probabilities 
(microscopic reversibility) 

n states (basins) 



MASTER EQUATION: ANALYTICAL  SOLUTION 

 , 
d

dt


P
K P  ( ),  , ij j i ii i j

j

K k j i K k     P(0) given 

J. Wei, C.D. Prater, Advan. Catal. 13, 204 (1962). 

N. V. Buchete, G. Hummer, J. Phys. Chem. B 112, 6057 (2008). 

G. Boulougouris, DNT, J. Chem. Phys. 130, 044905 (2009). 

K.E. Shuler, Phys. Fluids 2, 442 (1959). 

Define reduced state probabilities:  ( ) ( ) / ( )i i iP t P t P 
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d
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

P
K P     /   ,ij ij j iK K P P            given (0)P

Matrix      is symmetric  (microscopic reversibility) K

Matrix      is negative semidefinite K



MASTER EQUATION: ANALYTICAL  SOLUTION 

J. Wei, C.D. Prater, Advan. Catal. 13, 204 (1962). 

N. V. Buchete, G. Hummer, J. Phys. Chem. B 112, 6057 (2008). 

G. Boulougouris, DNT, J. Chem. Phys. 130, 044905 (2009). 

K.E. Shuler, Phys. Fluids 2, 442 (1959). 

Diagonalization of      permits writing down an analytical 

solution to the master equation. 

K
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EROPHILE:  Eigenvalue Representation of Observables 

and Probabilities in a HIgh-dimensionaL Euclidean space 

For any observable A, which has well-defined values Ai within 

each state i,  nonequilibrium ensemble average value at time t is: 

G. Boulougouris and DNT, J. Chem. Phys. 130, 044905 (2009) 

1

1 1

( ) ( ) ( )   e m

n n
λ t

i i m m

i m

t P t a β


 

    A A A

(0),m ma  u P      (1 1)m mβ m n   u A

∞: equilibrium among the n explored states. 

Time autocorrelation function is: 
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Explored Boundary 

“Dynamical Integration of a Markovian Web” 

(DIMW): G. Boulougouris and DNT,                   

J. Chem. Phys. 127, 084903 (2007) 

TRACKING  THE  EVOLUTION OF THE PROBABILITY DISTRIBUTION   

AMONG STATES  BASED ON A FIRST PASSAGE SAMPLING SCHEME 

Distinguish between “explored” states 

(paths leading out of them determined), 

and “boundary” states (connected to 

explored states but not yet explored 

themselves).  

Set of explored states augmented by 

appending a boundary state at an 

appropriately chosen time based on first 

passage time analysis. 

Set of boundary states updated by 

including neighbors of newly added state. 

Analytical solution of master 

equation, with atomistically 

calculated rate constants, in a 

network of states that is 

progressively augmented    

“on the fly” 

Time-dependent probability of occupancy 

of each explored state determined by 

analytical solution of master equation: 
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a-PS, T=250K, ρ=0.951g/cm3: EVOLUTION  OF  THE                         

TIME-DEPENDENT  “HELMHOLTZ  ENERGY”     

UNDER  CONSTANT  VOLUME 

B( ) ( ) ( ) ln ( )i i i i

i i

A t P t A k T P t P t  

Ai: Helmholtz  energy of 

basin i (incl. inherent 

structure energy and  

vibrational contributions)  

Pi(t): fraction of time 

spent in basin i 

240 explored states 

2880 saddle point calculations 

G. Boulougouris and DNT, J. Chem. Phys. 127, 084903 (2007) 

G. Boulougouris and DNT, J. Chem. Phys. 130, 044905 (2009) 



CHARACTERISTIC  FREQUENCIES  
FOR  SUBGLASS  RELAXATIONS   

: Diagonalization 

of rate constant 

matrix at 10-5s,  

landscape, 250 K 

: Loss modulus 

measurements 

(peak frequencies)  

□,  

G. Boulougouris and DNT, J. Chem. Phys. 127, 084903 (2007) 



ORIENTATIONAL  DECORRELATION 

OF PHENYL STEMS 

l = index of phenyl along aPS chain 

aPS                     

250 K, 1 bar 

All modes 

DIMW/EROPHILE 

based on restricted 

equilibrium at 10-5 s 

G. Boulougouris and DNT, J. Chem. Phys. 130, 044905 (2009) 

( ) (0)x xtv v



ORIENTATIONAL  DECORRELATION 

OF PHENYL STEMS 

l = index of phenyl along aPS chain 

aPS                     

250 K, 1 bar 

Mode λn= -105.22 s-1 

(“γ process”)  

DIMW/EROPHILE 

based on restricted 

equilibrium at 10-5 s 

G. Boulougouris and DNT, J. Chem. Phys. 130, 044905 (2009) 

( ) (0)x xtv v



ORIENTATIONAL  DECORRELATION 

OF VECTORS  NORMAL  TO  PHENYLS 

l = index of phenyl along aPS chain 

aPS                     

250 K, 1 bar 

Mode λm= -109.54 s-1 

(“δ process”)  

DIMW/EROPHILE 

based on restricted 

equilibrium at 10-5 s 

G. Boulougouris and DNT, J. Chem. Phys. 130, 044905 (2009) 

( ) (0)z ztv v



• In many systems evolving through infrequent transitions in a 

network of states (e.g., reacting systems, glasses)  the number 

of states (e.g., molecular species, basins) is enormous 

THE  LUMPING  PROBLEM 

J. Wei, J.C.W.  Kuo  I&EC Fundamentals 8(1), 114 (1969)  

 Because of this large number, one is unable to deal with 

each state separately 

 It is expedient to lump all the states into a few clusters or 

“equivalence  classes" or “lumped classes”, and then consider 

each class as an independent entity 



     Lumping =  linear transformation of  an     -tuple  state probability 

vector,    , into an    -tuple vector    , of smaller dimension with help 

of a           matrix       of rank     , where           :  

LUMPING  ANALYSIS 

n

n̂

nnˆ n̂ nn ˆ

P P̂

M

M

P

= P̂

Properties of lumping matrix M: 

•  Elements are either 0 or 1 

•  Each column contains exactly one 1 

J. Wei, J.C.W.  Kuo  I&EC Fundamentals 8(1), 114 (1969)  



LUMPING  ERROR 

System whose dynamics follows the master equation  

               is exactly lumpable by a matrix M if there  

exists a matrix      such that the dynamics of the  

lumped system is described by               .  Then, 

d

dt


P
KP

K̂
ˆ

ˆ ˆd

dt


P
KP

                     =    

                

                  

            

K̂ MM

K

Lumping error:  
ˆ

2

1 1

n n

ijF
i j

E E
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  E ˆ,      E M K K M



THE  PROBLEM  OF  OPTIMAL  LUMPING 
For a system with n states whose dynamics is 

described by the nn matrix K, determine a 

number of lumped states     and a        lumping 

matrix M such that the objective function  

n̂ n̂ n̂

1 2 3
ˆ ˆ ˆ( , ) ( , , )   , z n z E W n z W z E z n   M

with z1, z2, z3 pre-defined constants, is minimized.  

E =  lumping error  

W =  long-time parameter  
 


n

i

n

j

ij
F

KW
ˆ

1

ˆ

1

2
ˆˆ     K

T 1 Tˆ ˆˆ ,          K M K A M A A M A M

A = diag( P1(∞), P2(∞), …, Pn(∞))  

N. Lempesis, D.G. Tsalikis, G.C. Boulougouris, DNT J. Chem. Phys. 

135, 204507 (2011). 



THE  PROBLEM  OF OPTIMAL  LUMPING 

Problem solved stochastically, using MC moves 

which change the dimensionality     and the form of 

the lumping matrix M, while respecting the 

constraints it must satisfy. 

n̂

Wang-Landau scheme invoked to determine 

density of matrix M-“states” in the space of 

variables (E, W,     ).  This avoids getting trapped  

in local minima of the objective function z(   , M). 

n̂
n̂

Pick that M which minimizes the objective function.   

N. Lempesis, D.G. Tsalikis, G.C. Boulougouris, DNT J. Chem. Phys. 

135, 204507 (2011). 



TEST OF  LUMPING  ALGORITHM 

System: 641 particle Lennard-Jones mixture  (80%A, 20%B) 

at 37 K, just below Tg=38.4 K.  Original network of n =1503 

states (basins) with 51207 transition rate constants between 

them determined through parallel Temperature Accelerated 

Dynamics and Histogram reweighting.  Final    =600.  n̂



TEST  OF  LUMPING  ALGORITHM 

N. Lempesis, D.G. Tsalikis, G.C. Boulougouris, DNT J. Chem. Phys. 

135, 204507 (2011). 



TEST  OF  LUMPING  ALGORITHM 

Histograms of inverse opposite eigenvalues of rate constant 

matrix in original (1503 states) and lumped (600 clusters of 

states) systems 



SUMMARY 

  In a glassy system, the Dynamic Integration of a Markovian Web 

(DIMW) method can track structural relaxation by solving the master 

equation in a network of explored states which is progressively 

augmented “on the fly”.   

  Addressing long-time dynamics is greatly facilitated if system 

evolution in configuration (or order parameter) space can be reduced 

to a succession of uncorrelated infrequent events.  Rate constants for 

individual events can be estimated from the (free) energy landscape 

and the particle masses.   

  Analytical solution of the Master Equation starting from a given 

probability distribution among states can be much more efficient than 

Kinetic Monte Carlo, when the spectrum of eigenvalues of the rate 

constant matrix is very broad.  Correlation functions for state-

dependent observables are readily obtained from the analytical 

solution (EROPHILE).  

  A systematic “lumping” technique has been designed which reduces 

the number of states that need to be tracked, while preserving the 

long-time dynamical characteristics of the system. 



MOTIVATION 

• Atomistic molecular dynamics simulation:   
μs time scales. [see, however, ms-long 
simulations of K.Lindorff-Larsen, S. Piana, R.O. 
Dror, D.E. Shaw, Science 334, 517-520 (2011)]. 

• Dynamics of most physical, chemical, 
materials, biological systems:  s to years. 

 
• In many cases, dynamics is slow because 

the system spends most of its time trapped 

within relatively narrow regions of 

configuration space and only infrequently 

jumps from region to region.   



RUGGED ENERGY  LANDSCAPES  

x2 x1 

Potential energy 
V (x), or 

potential of  

mean force U(x) 

Minima: “inherent structures” F. H. Stillinger, Science  267, 1935 (1995). 

(Collections of) basins of attraction around minima:  “states”. 

The entire x-space can be tessellated into states. 

atomic coordinate or 

collective variable 

(“order parameter”) 



EXAMPLES  OF  PHENOMENA  INVOLVING    

EVOLUTION  ON RUGGED  ENERGY  LANDSCAPES 

• Diffusion of defects and impurities in metals and 

semiconductors 

• Permeation of gas molecules through amorphous 

polymers 

• Diffusion of bulky hydrocarbons in zeolites 

• Structural relaxation and plastic deformation of 

glassy materials 

• Protein folding 

• Phase transitions in molecular and atomic clusters 

• Kinetics of  networks of chemical reactions 



OUTLINE 

• Infrequent events, calculation of transition rate 

constants 

• Kinetic Monte Carlo simulation 

• The energy landscape picture for glasses 

• Low-temperature diffusion of Xe in Silicalite-1:  

Comparative application of various methods 

• A method for tracking structural relaxation in 

glasses: Application to atactic polystyrene 

• Master Equation: its analytical solution and 

calculation of time correlation functions 

• The lumping problem 



TRANSITION  RATE  CONSTANT 

Time scale separation: Mean 

waiting time for transition out of a 

state is long in comparison with the 

time required for system to 

establish a restricted equilibrium 

among configurations in the state. 

tcor << trxn 

By the time it exits a state, the system has lost all memory 

of how it entered there (Markovian character of a 

sequence of infrequent events). 

Rate constant kij:  Probability per unit time that a transition 

to state j will occur, provided the system is in state i.  



COMPUTATION  OF  RATE  CONSTANTS 

Input: Energy hypersurface and masses associated with 

degrees of freedom. 

• Molecular dynamics (MD), reduction to an inherent 

structure trajectory and hazard plot analysis [E. Helfand, 

J. Chem. Phys. 69, 1010 (1978)] 

• Temperature-accelerated dynamics [M. R. Sørensen,  

A.F. Voter, J. Chem. Phys. 112, 9599 (2000)] 

• Transition-State Theory estimate         from free energy 

difference between the system confined to the boundary 

hypersurface of state i and the system allowed to 

sample the entire state i.  Calculation  of dynamical 

correction factor           through short MD trajectories 

initiated on the boundary hypersurface [C.H. Bennett, 

1975;  D. Chandler, J. Chem. Phys. 68, 2959 (1978),  

A.F. Voter and J.D. Doll, J. Chem. Phys. 82, 80 (1985)]. 

TST

ik ®

d,i jf ®



COMPUTATION  OF  RATE  CONSTANTS 

• Determination of reaction path (e.g., by Fukui’s intrinsic 

reaction coordinate approach) and computation of free 

energy profile along the path by umbrella sampling or 

“blue moon ensemble” simulations [T.R. Forester, W. 

Smith J. Chem. Soc. Faraday Trans. 93, 3249 (1997)] 

• Flux-tempered metadynamics [S. Singh, C.C. Chiu, J. 

de Pablo J. Stat. Phys. 144, 1 (2011); A. Laio, M. 

Parrinello, Proc. Natl. Acad. USA 99, 12562 (2002)] 

• Transition path sampling [P.G. Bolhuis, D. Chandler, C. 

Dellago, P.L. Geissler  Annu. Rev. Phys. Chem. 53, 291 

(2002); C. Dellago, P.G. Bolhuis, P. Geissler Adv. Chem. 

Phys. 123, 1 (2002)] 



SEQUENCE  OF  INFREQUENT  EVENTS  IS  A  

HOMOGENEOUS  POISSON  PROCESS 

• Numbers of occurrences counted in disjoint time intervals 

are independent of each other. 

• Probability distribution of occurrences counted within any 

time interval only depends on the length of the interval. 

• No counted occurrences are simultaneous. 

• Waiting time until the next occurrence follows an 

exponential distribution:   ̂ ( ) exp( )ρ τ τk k 

• Number of observed occurrences within a given time 

interval follows a Poisson distribution: 

exp( )( )
[ ( ) ( ) ]

!

nkτ τ
P N t τ N t n

n

k
   

• Several Poisson processes i occurring in parallel 

constitute a Poisson process with rate constant                .   i

i

k k



KINETIC MONTE CARLO (KMC) SIMULATION 

Generation of stochastic trajectories as sequences of 

transitions between states in a network of n states 

Deploy N >> n independent walkers among the states according to a 

prescribed initial probability distribution: Ni (t) ≈ N Pi(0), i=1, 2, …, n 

(i) For each state i that is occupied at time t, calculate expected fluxes 
Ri→j(t) = Ni (t) ki→j , overall flux R(t) = ΣiΣjRi→j(t) and conditional 

probabilities qi→j(t) = Ri→j(t)/ R(t). 

(ii) Pick time until next transition Δt=−ln(1ξ)/R(t), where ξ    [0,1) is a 

uniformly distributed pseudorandom number. Pick type ij of next 

transition according to qi→j(t).  



(iii) Of the Ni (t) walkers present in state i pick one with probability 1/ Ni (t)   

and move it to state j. 

(iv) Advance simulation time by Δt.  Update array keeping track of current 
positions of all walkers.  Set Ni (t+ Δt) = Ni (t) − 1, Nj (t+ Δt) = Nj (t) + 1.   

 (v) Return to step (i). 



EROPHILE:  Eigenvalue Representation of Observables 

and Probabilities in a HIgh-dimensionaL Euclidean space 

For any observable A, which has well-defined values Ai within 

each state i,  nonequilibrium ensemble average value at time t is: 

G. Boulougouris and DNT, J. Chem. Phys. 130, 044905 (2009) 
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1 1

( ) ( ) ( )   e m

n n
λ t

i i m m

i m

t P t a β


 

    A A A

(0),m ma  u P      (1 1)m mβ m n   u A

∞: equilibrium among the n explored states. 

Time autocorrelation function is: 
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GLASSES  ARE  NON-EQUILIBRIUM  MATERIALS     

WITH  COMPLEX  MECHANICAL  BEHAVIOUR 

Tension Compression 

H. Van Melick,  Ph.D. Thesis, Technical University of Eindhoven, 2002 



 Coarse-grained approaches to the simulation of 

physical ageing and deformation. 

entanglements 

important 

POSSIBLE  RESOLUTION   OF  THE  LONG  TIME  

CHALLENGE  IN  POLYMER  GLASS  SIMULATIONS 

energy 

landscape 

important 



CHALLENGES  FOR  MOLECULAR  

MODELLING  OF  GLASS  PROPERTIES 

• Atomistic Molecular Dynamics (MD) can address 

times up to 1 μs  and length scales up to 10 nm. 

• Impossible to obtain a computer glass with a 

formation history that is both well-defined and 

realistic.  (Typical MD cooling rates ≥ 108 K/s). 

• MD deformation experiments are ultrafast (strain 

rate ≥ 106 s-1).  



OUTLINE 

• The energy landscape picture 

• Transitions between basins in configuration 

space: What can be learnt from MD of a 

Lennard-Jones glass 

• Estimation of interbasin rate constants by 

Transition-State Theory 

• Quasiharmonic approximation: Volumetric 

properties and elastic constants of glassy aPS 

• The DIMW and EROPHILE methods for tracking 

structural relaxation: Application to glassy aPS 

• From basins to metabasins 



TRANSITIONS  BETWEEN BASINS:  WHAT CAN  BE  

LEARNT  FROM  MOLECULAR  DYNAMICS 

      Binary mixture of A (80%) and B(20%) Lennard-Jones spheres.          

mA=mB, σBB=0.88σAA, σAB=0.88σAA, εBB=0.50εAA, εAB=1.50εAA    

Kob,W., Andersen, H. C. Phys. Rev. Lett. 73, 1376 (1994).      Shell, S.M., 
Debenedetti, P.G., Panagiotopoulos, A.Z.  Fluid Phase Equil. 241, 147 (2006). 

Characteristic temperatures:                                                        
Mode coupling       Tc=0.435 εAA/kB   =  52.2 K (for A=argon)                
Glass temperature Tg0.32   εAA/kB   =  38.4 K 

Canonical (NVT) and microcanonical (NVE) molecular 
dynamics (MD) simulations at constant density 1.1908 σAA

-3.  
N=641 atoms total. Nosé-Hoover thermostat, Velocity Verlet 
algorithm. Integration time step 1fs. 

    Potential energy minimizations with conjugate gradient algorithm       
used to map MD trajectory onto a corresponding inherent 
structure trajectory. 



STEPWISE COOLING:                   

INHERENT  STRUCTURE  ENERGIES 

14.5 ns 

67 K 

38 K 

9 K 

Units:  Energy     = 0.998 kJ/mol, time                             = 3.1 10-13 s   
1/ 2

2
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MEAN  SQUARE  DISPLACEMENT OF                         

A-TYPE ATOMS 

67 K 38 K 9 K 
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Units:  Length     =3.410-10m,    time                             = 3.1 10-13 s   
1/ 2

2

A AA AA/(48 )m σ εAAσ

“Cage effect” at short times, whose duration becomes very long at low T. 

Long-time diffusive motion in the liquid very well captured by inherent structure 

trajectory. 



POISSON  PROCESS  MODEL  

• Glassy system starts off with an initial distribution Pi(0) 
among basins i, which is dictated by its formation history.  

• Distribution Pi(t) among basins (states) evolves through 
successive transitions between basins. 

• Transitions are infrequent events: mean waiting time for 
transition out of a basin is long in comparison to the time 
required to establish a restricted equilibrium among 
configurations in the basin. 

Master Equation:  

 
   j

j i j i

i j

i

j iik k
d

dt

P t
P t P t

 

 
  

transition rate constant 

from basin i to basin j 

d

dt


P
KP

vector of basin 

probabilities 

rate constant 

matrix 



CALCULATING  RATE  CONSTANTS  FOR  

TRANSITIONS  BETWEEN  BASINS 

Definitions: 

Hazard rate h(t): Conditional probability that a system, which has 

survived a time t since its last transition, will undergo a transition 

between t and t+dt is h(t) dt. 

Cumulative hazard H(t): 

0

  ( ) ( )
t

H t h t dt

Probability that a transition occurs in time less than t since 

the last transition:   1  ( ) exp ( )P t H t

Poisson process: h(t) = λ, a constant.                                                               

                       H(t)= λt,    P(t)=1exp( λt) 



CALCULATING  RATE  CONSTANTS  FOR  

TRANSITIONS  BETWEEN  BASINS 

Hazard Plot Analysis  Helfand, E. J. Chem. Phys. 69, 1010 (1978)  

In the course of MD simulation, for any visited basin, β, record residence times 

between entry to and exit from the basin.  Also record the basins γ to which 

exits from β occur.  

Order residence times in β:  
1 2
  ...

n
t t t

1 1 1

1 1
   

  
ˆ ( ) ...kH t

n n n k

Estimate cumulative hazard                                                                  

corresponding to residence time tk:  

ˆ ( )
k

H t

Linear plot            going through the origin                                                   

indicates a Poisson process.    

ˆ ( )
k

H t

Slope of              plot, λβ = total rate constant for exiting basin β. ˆ ( )
k
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MEAN  SQUARE  ATOMIC  DISPLACEMENT  

ALONG INHERENT  STRUCTURE TRAJECTORY 
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Red line: direct calculation from 
MD, minimisations every 2ps  

Green line: direct calculation from 
MD, minimisations every 1.2ps  

Blue line:  Poisson process 
model, minimisations every 2ps 

Purple line:  Poisson process 
model, minimisations every 1.2ps 

T=23K 

Poisson process model:   
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Pαβ (t) =Pβ(t) from solution to the Master Equation 

              with initial condition Pi (0)=δiα 

position of atom i in 

inherent structure α 0.1 



OBSERVATION  OF  METABASINS 

Tsalikis, D., Lempesis, N., Boulougouris, G.C., DNT J. Chem. Theory Comput. 6, 1307 (2010) 

History: Sudden cooling from T=55K to T=37K (3 ns NVT MD trajectory)  

Plot:      Distribution of potential energies of inherent structures (ISs) visited. 

Inset:    Time evolution of the IS trajectory.  

Three “metabasins” can be identified visually. 

Binary mixture of A (80%) and 

B(20%) LJ spheres 

mA=mB, εBB=0.50εAA, εAB=1.50εAA 

σBB=0.88σAA, σAB=0.88σAA. 

    =1.1908 σAA
-3,  N=641 atoms. 

Mode coupling Tc=0.435 εAA/kB   =  

52.2 K (for A=argon). 

Glass temperature Tg0.32 εAA/kB   =  

38.4 K 





IDENTIFICATION  OF  A  METABASIN 

Tsalikis, D., Lempesis, N., Boulougouris, G.C., DNT J. Chem. Theory Comput. 6, 1307 (2010) 

Number of distinct explored minima as a function of time at T=37K. When a 

plateau is observed for a prefixed time interval (here 0.02 ns), the explored minima 

are considered to belong to the same metabasin.  

Binary mixture of A (80%) and 

B(20%) LJ spheres 

mA=mB, εBB=0.50εAA, εAB=1.50εAA 

σBB=0.88σAA, σAB=0.88σAA. 

   =1.1908 σAA
-3,  N=641 atoms. 

Mode coupling Tc=0.435 εAA/kB   =  

52.2 K (for A=argon). 

Glass temperature Tg0.32 εAA/kB   =  

38.4 K 





MD TRAJECTORIES USED FOR THE 

EXPLORATION OF A METABASIN 

Tsalikis, D., Lempesis, N., Boulougouris, G.C., DNT J. Chem. Theory Comput. 6, 1307 (2010) 

●: basins constituting the 

metabasin.                                   

●: neighbouring basins, not 

belonging to the metabasin.                                                  

____: configuration-space 

projection of NVT MD trajectory 

used to define the metabasin.                   

ο: configuration-space projections 

of points in phase space sampled 

during the NVT MD trajectory.  

Phase-space points ο are stored and employed as starting points for generating a swarm 

of NVE MD trajectories trapped in the metabasin. 

 ____ ,  ____: configuration-space projections of two NVE MD trajectories started from two 

stored phase space points.  These may be conducted in parallel. 



TEMPERATURE-ACCELERATED DYNAMICS1    

• From                                 determine                  , hence rate 
constant          for each basin-to-basin transition α→b  with α 
in the considered metabasin, through hazard plot analysis. 

1F. Montalenti, A.F. Voter, J. Chem. Phys. 116, 4819 (2002).                                                          
2A.M. Ferrenberg and R.H. Swendsen, Phys. Rev. Lett. 63, 1195 (1989)                         
0D. Tsalikis, N. Lempesis, G.C. Boulougouris, DNT J. Phys. Chem. B 114, 844 (2010). 

• Construct swarms of NVE MD trajectories trapped within the 
metabasin off of each of the NVT MD trajectories.  Analyze the 
NVE trajectories to determine residence time distributions              
      within each basin α  and conditional probabilities           
of transition into other basins b upon exit from α at each 
energy level E. 

ˆ ( )α

NVEP t 

NVE

α βΠ

• Use histogram reweighting2 in order to determine energy 
distribution               at the temperature of interest, T0.   est

0,p E T

 est

0
ˆ, , ( ), α NVE

NVE α βp E T P t Π
 

0

0

ˆ ( ), NVTα

NVT α βP t Π


0NVT

α βk

• Define metabasin at T0=37 K 

• Conduct long NVT MD simulations trapped within the 
metabasin at T=37K, 40K, 43K, 46K, 49K, 52K, and 55K. 



DISTRIBUTION  OF  TRANSITION  RATE CONSTANTS  

BETWEEN  BASINS  OF  A  METABASIN (LJ MIXTURE) 

Tsalikis, D., Lempesis, N., Boulougouris, G.C., DNT J. Phys. Chem. B, 114, 7844 (2010). 

Number of identified distinct 

transitions between the basins of a 

specific metabasin at 37K, as a 

function of their rate constant.                       

      : MD simulation at 37 K,  

trapped within the metabasin.       

---------  : Swarm of NVE trajectories 

generated in parallel off of an  NVT 

trajectory at 37K.    

———  : Temperature-accelerated 

method, using as input data from 

swarms of NVE trajectories at 

temperatures from 37Κ to 55Κ.   

Inset: same plot for the total range 

of rate constants sampled by the 

temperature-accelerated method.  
 a b 0 a b 0( / )  ( / )  ,   0.01αρ k ν B k ν α

Distribution similar to that proposed by  J. P. Bouchaud, J. Phys. I France, 2, 1705-1713 (1992). 



DISTRIBUTION  OF  TRANSITION  RATE CONSTANTS  

BETWEEN  BASINS  OF  A  METABASIN (LJ MIXTURE) 

Implication for distribution of   barrier heights                                                      : 0 
  B ln( / )a b a bE k T k ν

  1
B B

exp ( ) a b
a b

EB
ρ E α

k T k T




 
   

 

Reminiscent of  distribution of trap free energies f  in spin glass models, with Ea→b= f0 – f. 

f 
f0 

E 

“In the spin glass phase of both 

the Random Energy Model (REM) 

and the SK model, the distribution 

of very low f ’s is exponential: 

  0exp
f fN

ρ f x
T T

 
  

 

where x is a temperature-dependent  number between 0 and 1, f0 is the reference level 

beyond which levels proliferate, and N is a constant.   In the REM, x=T/Tg, which is 

connected to the fact that the free energy landscape is temperature independent.” 

J. P. Bouchaud, J. Phys. I France, 2, 1705-1713 (1992). 



BASIN-TO-BASIN TRANSITIONS  IN  LJ  SYSTEM: 

COOPERATIVITY  VS.  DISTANCE TRAVERSED 

Tsalikis, D., Lempesis, N., Boulougouris, G.C., DNT J. Phys. Chem. B, 114, 7844 (2010). 

Two-dimensional histogram of 

51207 inter- and intra-metabasin 

transitions explored in the course 

of sampling 4 metabasins. 

|Rb | (r.u.):  Euclidean distance 

traversed between inherent 

structures in the 3N=3641-

dimensional configuration space   

of the system.  

pb : Participation ratio 

displacement vector of atom i between 

inherent structures α and β 
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MECHANISM  OF  BASIN-TO-BASIN  TRANSITIONS  (LJ MIXTURE) 

Tsalikis, D., Lempesis, N., Boulougouris, G.C., DNT J. Phys. Chem. B, 114, 7844 (2010). 

Displacement vectors of all atoms for single transitions with different Euclidean norms |R|:                                                          

(a) 1.7 r.u. (5.8 Å): Isolated cage breaking event.                                                                                                                                                                  

(b) 3.78 r.u.: At this point we start observing more than one cage breaking events within the simulation box.                  

(c) 5.11 r.u.: From this point on, chain formation is evident and transitions are almost entirely inter-metabasin.               

(d) 7.04 r.u.: From this point on, formation of more than one chains is probable.                                                              

(e) 7.94 r.u.: At this point there is extended formation of several interlinked chains.                                                                    

(f)  9.50 r.u.: Extensive shear band-like displacement of atoms. 

Red colour marks displacements longer than 0.6 r.u. (2 Å). 



SOME  OBSERVATIONS  FROM  MD 

Rate constants describing transitions between any connected basins 

estimable by hazard plot analysis. 

Time-dependent occupancy probabilities for basins and mean square 

displacement of atoms along inherent structure trajectory captured by 

Poisson process model in excellent agreement with direct MD.                            

Mathematical procedure developed for “lifting” the inherent structure 

trajectory and reproducing the mean squared displacement of atoms as a 

function of time.  Contributions from switches between inherent structures, 

uncorrelated vibrations in original and destination basins,  and in-basin time-

dependent motion  accounted for.   

Structural relaxation below Tg well described as a Poisson process 

involving successive uncorrelated transitions between basins in 

configuration space constructed around potential energy minima (inherent 

structures).   

Results from “lifted” trajectory in excellent agreement with full MD. 
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T=9K:  INHERENT  STRUCTURE  TRAJECTORY 
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T=9K: BASIN  PROBABILITIES 
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Fluctuating lines:  Direct calculation from MD, energy minimization.        
Horizontal lines: Based on kb→γ, solution of the Master Equation. 
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RECONSTRUCTING  THE  FULL  MEAN  

SQUARE  DISPLACEMENT  OF  ATOMS 
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   Term 2:  Intra-basin Displacement 

   (final = original minimum) 

 Term 3:  Intra-basin Vibrations  

 around the initial and the final minima  

 (switch in minimum) 

    Term1: MSD Inherent Structures 

  (inter-basin contribution)  

Poisson process model: 

Tsalikis, D., Lempesis, N., Boulougouris, G.C., DNT J. Phys. Chem. B 112, 10628 (2008) 



RECONSTRUCTING  THE  FULL  MEAN  

SQUARE  DISPLACEMENT  OF  ATOMS 

Information needed for reconstruction:  

Rate constants          describing transitions between any           

pair of  connected basins of the system. 
  

β γ
k

Square of the (continuous) displacement Cartesian distance for all 

particles between inherent structures,                  .                    
2

min min

, ,i β i αr r

Mean square displacement within each basin as a function of 

time since entry to the basin,                        .  
2

( ) (0)α α

i iδτr r

Equilibrium in-basin variance of atomic positions relative to the 

energy minimum,              , for each basin.  
2

Δ α

ir

Tsalikis, D., Lempesis, N., Boulougouris, G.C., DNT J. Phys. Chem. B 112, 10628 (2008) 
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Term 1: Interbasin displacement between inherent structures 

Term 2: Intra-basin displacement (final = original minimum) 

Term 3: Intra-basin uncorrelated vibrations about original and final minima 

  (switch in minima) 



TEMPERATURE-ACCELERATED DYNAMICS  IN 

GLASS-FORMING  LJ  MIXTURE     

2Tsalikis, D., Lempesis, N., Boulougouris, G.C., DNT J. Phys. Chem. B 114, 7844 (2010). 

Estimation of transition 

rate constant                       

out of a basin α at 

T0=37 K                            

(a) from a swarm of 

parallel NVE 

trajectories initiated off 

of an NVT MD run1 at 

T0, and                                

(b) from a temperature-

accelerated dynamics 

scheme.2 

0 0NVT NVT

α α β

β

k k
 



1Tsalikis, D., Lempesis, N., Boulougouris, G.C., DNT J. Chem. Theory Comput. 6, 1307 (2010) 



HAZARD PLOT ANALYSIS: NVT MD vs. SWARM 
of  PARALLEL NVE MD TRAJECTORIES  

TRAPPED WITHIN  A METABASIN   

Tsalikis, D., Lempesis, N., Boulougouris, G.C., DNT J. Chem. Theory Comput. 6, 1307 (2010) 

Binary mixture of A (80%) and 

B(20%) LJ spheres, T=37 K 

mA=mB, εBB=0.50εAA, εAB=1.50εAA 

σBB=0.88σAA, σAB=0.88σAA. 

ρ =1.1908 σAA
-3,  N=641 atoms. 

Mode coupling Tc=0.435 εAA/kB   =  

52.2 K (for A=argon). 

Glass temperature Tg0.32 εAA/kB   =  

38.4 K 



DISTRIBUTION  OF  DISTANCES  TRAVERSED BY A 

TRANSITION  BETWEEN  BASINS  (LJ MIXTURE) 

Probability density of Euclidean distances |R| between inherent structures (ISs).   

(a) For all ISs, irrespectively of whether they belong to the same metabasin. 

(b)  only for ISs belonging to the same metabasin.  

      I: with no restriction in respect to direct connectivity (all-to-all). 

     II: provided a direct connection was found with the temperature accelerated dynamics. 

III-XI:provided a direct connection was found with rate constant ki→j at 37 K faster than 10 s-1 (III); 103 s-1 
(IV); 105 s-1 (V); 107 s-1 (VI); 108 s-1 (VII); 109 s-1 (VIII);  1010 s-1  (IX);  1011 s-1 (X). 

(a) (b) 



CAGE  BREAKING EVENT DURING 

INTRAMETABASIN  TRANSITION 

Tsalikis, D., Lempesis, N., Boulougouris, G.C., DNT J. Chem. Theory Comput. 6, 1307 (2010) 

ρ =1.1908 σAA
-3 , T=37 K 

Big spheres: Ιnitial positions        

Small spheres: Final positions     

Red: first neighbours of central 

moving atom (also shown in red), 

both before and after the transition.                             

Cyan: first neighbours of central 

moving atom before, but not after 

the transition.                                    

Blue: atoms which became first 

neighbours of central moving atom 

after the transition.                                     

Blue(red) surfaces: Accessible 

volume to central moving atom 

before (after) transition. 



STRINGLIKE  MOTION EVENT DURING 

INTERMETABASIN  TRANSITION 

Tsalikis, D., Lempesis, N., Boulougouris, G.C., DNT J. Chem. Theory Comput. 6, 1307 (2010) 

Binary LJ mixture                                         

ρ =1.1908 σAA
-3 , T=37 K 

Initial positions: big spheres        

Final positions: small spheres     

Red: first neighbours of central 

moving atom both before and after 

the transition.                             

Cyan: first neighbours of central 

moving atom before, but not after 

the transition.                                    

Blue: atoms which became first 

neighbours of central moving atom 

after the transition.                                     



DISTRIBUTION  OF  RATE  CONSTANTS  OF  TRANSITIONS   

ENCOUNTERED DURING  AGEING  SIMULATIONS  
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REVERSE  MAPPING  TO  ATOMISTIC  LEVEL 
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Restoration of atomistic detail and relaxation of  local packing 

via a MC procedure employing  local moves which preserve 

chirality and prevent adoption of unrealistic torsional states. 

WAXS 

pattern 

T. Spyriouni, C. Tzoumanekas, DNT, G. Milano, F. Müller-Plathe, 

Macromolecules, 40, 3876-3885 (2007). 
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R 

CG PS equilibration 

 increases monotonically until it 

reaches a  plateau. Excellent agreement with 

experimental (SANS) and simulation results [1] . 

1. Spyriouni, T.; Tzoumanekas, C.; Theodorou, D.N.; Müller-

Plathe, F.; G. Milano G. Macromolecules 2007, 40, 3876.  

2. Cotton, J.P.; Decker, D.; Benoit, H.; Farnoux, B.; Higgins, 

J.; Jannink, G.; Ober, R.; Picot, C.; des Cloizeaux, J. 

Macromolecules 1974, 7, 863.  
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T=500 K,  p = 1 bar 

Points: CGMC simulation                                          

line: SANS[2] 
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i     i+1 

PS Reverse mapping: Torsion angle distributions 

 Robyr, P.; Gan. Z.; Suter, U.W.  

 Macromolecules 1998, 31, 8918. 

This work, united atom model of 

Lyulin, A.V.; Michels, M.A.J.  

Macromolecules 2002, 35,1463 

meso 

racemo 

i    i+1 
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United-atom PS: Wide Angle Neutron Scattering 

 All hydrogens 
replaced by 
deuteriums 

Furuya, H.; Mondello, M.; Yang, H-J.; Roe, 

R-J.; Erwin, R.W.; Han, C.C.; Smith, S.D. 

Macromolecules 1994, 27, 5674. 

This work 

Ring hydrogens 
replaced by 
deuteriums 
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United-atom PS: Segmental Dynamics 

 Addition of hydrogens during trajectory 
post-processing  [1] 

 Autocorrelation functions for:  

◦ C-C bonds along chain backbone 

◦ C-CM of the rings 

◦ C-H bonds pendant to backbone 

 Good agreement with all atom simulations 
and experiment at the same temperature 
(433 K) [2]  

1. Ahumada, O.; DNT.; Triolo, A.; Arrighi, V.; Karatasos, C.; Ryckaert, 

J.-P. Macromolecules 2002, 35, 7110. 

2. Harmandaris, V.A.; Floudas, G.; Kremer, K. Macromolecules 2011, 

44, 393. 

Harmandaris, V.A.; Floudas, G.; Kremer, K. Macromolecules 

2011, 44, 393. 

This work 



GLASSES  ARE  NON-EQUILIBRIUM  MATERIALS  

WITH  COMPLEX  MECHANICAL  BEHAVIOUR 

PC in compression: Effect of ageing 

H. Van Melick,  Ph.D. Thesis, Technical University of Eindhoven, 2002 



ELASTIC RESPONSE:  QHA 
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ELASTIC RESPONSE:  QHA 

Computational experiment  
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ELASTIC RESPONSE:  QHA 

Computational experiment  

of Uniaxial Deformation  

(one inherent structure) 

Atactic polystyrene 

T=325 K,  p= 1 bar 
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ELASTIC RESPONSE:  QHA 

Computational experiment  

of Uniaxial Deformation  

(one inherent structure) 

Atactic polystyrene 

T=325 K,  p= 1 bar 
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*J. Mark (Editor), Polymer Data Handbook (Oxford University Press, Oxford) 

QHA predictions: 

 E = 3.9 GPa,  ν = 0.35 

Exp. (Room Temp)*:            

 E = 3.2-3.4 GPa,  ν = 0.32 

ELASTIC RESPONSE:  QHA 

Computational experiment  

of Uniaxial Deformation  

(one inherent structure) 

Atactic polystyrene 

T=325 K,  p= 1 bar 
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FRACTAL  DIMENSION  OF  THE  NETWORK OF 

INHERENT  STRUCTURES (LJ MIXTURE) 

Tsalikis, D., Lempesis, N., Boulougouris, G.C., DNT J. Phys. Chem. B, 114, 7844 (2010). 

Correlation fractal dimension of the 

network of potential energy minima 

of a sampled metabasin and its 

neighbours.  

Config. space is 3641- dimensional.  

Short- dashed line: inclusion of all 

possible pairs of inherent structures, 

irrespective of whether they are 

directly connected or not. 

Continuous line: inclusion only of 

pairs that are directly connected by a 

transition sampled by our method.   

Fractal dimension in both cases is 

slightly lower than 3 (~2.95). 
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